matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Rechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Komplexe Rechnung
Komplexe Rechnung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Rechnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:33 Sa 07.07.2007
Autor: christoph21

Aufgabe
Lösen sie in C folgende Gleichung:
(cosx +isinx)(cos2x + isin2x)(cos3x + isin3x)....(cosnx + isinnx)=1
n [mm] \varepsilon [/mm] N

Hallo, weiss leider nicht wie ich diese Aufgabe lösen könnte.
Kann mir da vielleicht jmd. weiterhelfen?
Dankeschön

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Komplexe Rechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Sa 07.07.2007
Autor: angela.h.b.


> Lösen sie in C folgende Gleichung:
>  (cosx +isinx)(cos2x + isin2x)(cos3x + isin3x)....(cosnx +
> isinnx)=1
>  n [mm]\varepsilon[/mm] N
>  Hallo, weiss leider nicht wie ich diese Aufgabe lösen
> könnte.
>  Kann mir da vielleicht jmd. weiterhelfen?

Hallo,

bestimmt hattet Ihr in der Vorlesung die Euler-Formel [mm] e^{iy}=cosy+isiny, [/mm] die würde ich zunächst für die Faktoren verwenden.

Gruß v. Angela



Bezug
                
Bezug
Komplexe Rechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 Sa 07.07.2007
Autor: christoph21

Dann folgt also
[mm] e^{ix} [/mm] * [mm] e^{2ix} [/mm] * [mm] e^{3ix} [/mm] .... * [mm] e^{nix}=1 [/mm]
ist
[mm] \produkt_{i=1}^{n} e^{nix} [/mm] = 1
und jetzt??


Bezug
                        
Bezug
Komplexe Rechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Sa 07.07.2007
Autor: angela.h.b.


> Dann folgt also
>  [mm]e^{ix}[/mm] * [mm]e^{2ix}[/mm] * [mm]e^{3ix}[/mm] .... * [mm]e^{nix}=1[/mm]
>  ist
> [mm]\produkt_{i=1}^{n} e^{nix}[/mm] = 1
>  und jetzt??
>  

Nun würde ich mir überlegen, was [mm] e^a*e^b [/mm] ergibt.

Gruß v. Angela

Bezug
                                
Bezug
Komplexe Rechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Sa 07.07.2007
Autor: christoph21

Danke vorerst mal für deine Hilfe aber ich komm trotzdem nicht wirklich weiter

es muss dann [mm] e^{(1+2+....+n)ix}=1 [/mm] sein
aber wie komm ich jetzt auf die Lösung der Gleichung?


Bezug
                                        
Bezug
Komplexe Rechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 Sa 07.07.2007
Autor: Somebody


> Danke vorerst mal für deine Hilfe aber ich komm trotzdem
> nicht wirklich weiter
>  
> es muss dann [mm]e^{(1+2+....+n)ix}=1[/mm] sein
>  aber wie komm ich jetzt auf die Lösung der Gleichung?

Schreibe diese Gleichung so
[mm]e^{i\frac{n(n+1)}{2}x}=e^{i 2k\pi}, k\in\IZ[/mm]

Also muss
[mm]\frac{n(n+1)}{2}x=2k\pi[/mm]

für ein [mm] $k\in\IZ$ [/mm] sein. Dies nach $x$ aufzulösen kann nun nicht mehr so schwierig sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]