matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Primfaktorzerlegung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Primfaktorzerlegung
Komplexe Primfaktorzerlegung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Primfaktorzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:27 Sa 21.02.2009
Autor: pehdr

Aufgabe
Geben Sie die komplexen Nullstellen des reellen Polynoms F = [mm] X^6 [/mm] - 64 in der Form x + y * i mit exakten Werten x, y € R sowie die reelle und komplexe Primfaktorzerlegung von F an.

Hallo,

Ich versuche die obige Übungsaufgabe zu lösen und habe dazu mit Hilfe der Formel

[mm] z_{k} [/mm] = [mm] \wurzel[n]{R} [/mm] * [mm] e^{j(\bruch{\alpha}{n} + k * \bruch{2 * \pi}{n})} [/mm]

die komplexen Nullstellen bestimmt. Hierfür habe ich dann raus:

x0 = [mm] \wurzel{3} [/mm] + 1*j
x1 = [mm] \wurzel{3} [/mm] - 1*j

x2 = 2*j
x3 = -2*j

x4 = [mm] -\wurzel{3} [/mm] + 1*j
x5 = [mm] -\wurzel{3} [/mm] - 1*j

OK soweit ist es ja auch klar, nur verstehe ich den letzten Teil der Aufgabe mit der Primfaktorzerlegung nicht. Was soll ich da jetzt genau tun und wie muss man da vorgehen? Kann mir Jemand wohl bitte einen Tip geben?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Komplexe Primfaktorzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:58 Sa 21.02.2009
Autor: angela.h.b.


> Geben Sie die komplexen Nullstellen des reellen Polynoms F
> = [mm]X^6[/mm] - 64 in der Form x + y * i mit exakten Werten x, y €
> R sowie die reelle und komplexe Primfaktorzerlegung von F
> an.
>  Hallo,
>  
> Ich versuche die obige Übungsaufgabe zu lösen und habe dazu
> mit Hilfe der Formel
>  
> [mm]z_{k}[/mm] = [mm]\wurzel[n]{R}[/mm] * [mm]e^{j(\bruch{\alpha}{n} + k * \bruch{2 * \pi}{n})}[/mm]
>  
> die komplexen Nullstellen bestimmt. Hierfür habe ich dann
> raus:
>  
> x0 = [mm]\wurzel{3}[/mm] + 1*j
>  x1 = [mm]\wurzel{3}[/mm] - 1*j
>  
> x2 = 2*j
>  x3 = -2*j
>  
> x4 = [mm]-\wurzel{3}[/mm] + 1*j
>  x5 = [mm]-\wurzel{3}[/mm] - 1*j

Hallo,

[willkommenmr].

Deine Wurzeln mußt Du nochmal überprüfen, da ist Dir etwas schiefgegangen - leider durchschaue ich nicht recht, welchen Fehler Du gemacht hast.

Wenn Du bei erneutem Rechnen wieder diese Wurzeln bekommst, rechne vor.

Stutzig sollte Dich eigentlich gemacht haben, daß bei Deinen Lösungen 2 und -2 gar nicht vorkommen.


Mal angenommen, Du hast die Nullstellen [mm] a_1, [/mm] ..., [mm] a_6 [/mm] gefunden, dann ist [mm] (x-a_1)*....*(x-a_6) [/mm] die komplexe Primfaktorzerlegung.

Die reelle bekommst Du, wenn Du jeweils zwei Klammern,  bei denen [mm] a_i [/mm] und [mm] a_j [/mm] konjugiert komplex sind, zusammenfaßt. Das ergibt ein reelles quadratisches polynom ohne reelle Nullstelle.

Gruß v. Angela

Bezug
                
Bezug
Komplexe Primfaktorzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:06 Sa 21.02.2009
Autor: pehdr

Hallo Angela,

Vielen Dank für die Antwort. Ja das 2 und -2 da nicht vorkamen, darüber hatte ich mich vorhin schon gewundert. Ich werde es nun nochmal erneut rechnen!

Ist Primfaktorzerlegung also das gleiche wie Linearfaktorzerlegung? Der Begriff hat mich verwirrt, denn in meinen Büchern ist immer nur von Linearfaktorzerlegung die Rede, aber zu Primfaktorzerlegung steht dort nichts!

Bezug
                
Bezug
Komplexe Primfaktorzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:44 Sa 21.02.2009
Autor: pehdr

Hallo,

Ich habe doch nocheinmal eine Frage und zwar verstehe ich noch nicht so ganz, wie ich denn nun mit Hilfe dieser Formel die Nullstellen bestimme. Mein Problem ist, was genau muss ich für [mm] \alpha [/mm] denn einsetzen?

In meinem Buch ist hierzu als Beispiel das Polynom [mm] x^3 [/mm] - 8 gegeben und dort wird für [mm] \alpha [/mm] dann [mm] \pi [/mm] eingesetzt...ich habe das bei der obigen Aufgabe genauso versucht, dann bekomme ich diese Lösungen...

Vielen Dank für eure Hilfe!

Bezug
                        
Bezug
Komplexe Primfaktorzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Sa 21.02.2009
Autor: angela.h.b.


> In meinem Buch ist hierzu als Beispiel das Polynom [mm]x^3[/mm] - 8
> gegeben und dort wird für [mm]\alpha[/mm] dann [mm]\pi[/mm] eingesetzt...

Hallo,

das kommt mir nicht richtig vor.  

Es ist doch hier der Winkel =0, denn 8=8*(1+i*0)= [mm] 8*(\cos [/mm] 0 + [mm] i*\sin [/mm] 0).

Man erhält die Lösungen

[mm] x_0=8^{1/3}(\cos [/mm] (0 + [mm] 0*\bruch{2\pi}{3}) [/mm] + [mm] i*\sin [/mm] (0 + [mm] 0*\bruch{2\pi}{3}) [/mm] )= 2

[mm] x_1=8^{1/3}(\cos [/mm] (0 + [mm] 1*\bruch{2\pi}{3}) [/mm] + [mm] i*\sin [/mm] (0 + [mm] 1*\bruch{2\pi}{3}) [/mm] )= 2( (-1/2) + [mm] i*\wurzel{3}/2 [/mm] )

[mm] x_2=8^{1/3}(\cos [/mm] (0 + [mm] 2*\bruch{2\pi}{3}) [/mm] + [mm] i*\sin [/mm] (0 + [mm] 2*\bruch{2\pi}{3}) [/mm] )= ...


Entsprechend dann bei Deiner Aufgabe.

Gruß v. Angela

Bezug
                                
Bezug
Komplexe Primfaktorzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:16 Sa 21.02.2009
Autor: pehdr

Hallo,

Ah Ok, Nun ist alles klar, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]