matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenKomplexe Nullstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Komplexe Nullstellen
Komplexe Nullstellen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 Do 17.06.2010
Autor: steem

Aufgabe
Gesucht ist die allgemeine Lösung der homogenen linearen DGL $ y'''+y=0 $


Um das zu lösen sind ja erstmal die Nullstellen gesucht.
Also

[mm] $x^3+1=0 [/mm] $
[mm] $\Rightarrow \wurzel[3]{-1}=0 [/mm]

Das führt auf das Problem mit der Einheitswurzel. Was bei mir folgendermaßen aussieht.

[mm] $r=|z|=|-1+0*j|=\wurzel{(-1)^2+0^2*j}=1$ [/mm]
[mm] $\phi=arg(z)=arg(-1+0j)=arctan(\bruch{0}{-1})+\pi$ [/mm]

Damit dann für die K´s
$K=0: [mm] r*e^{j*\pi}=r*(cos(\pi)+j*sin(\pi))=-1$ [/mm]
$K=1: [mm] r*e^{j*\bruch{4*\pi}{3}}=r*(cos(\bruch{4*\pi}{3})+j*sin(\bruch{4*\pi}{3}))=-\bruch{1}{2}-\bruch{1}{2}*j*\wurzel{3}$ [/mm]
$K=2: [mm] r*e^{j*\bruch{7*\pi}{3}}=r*(cos(\bruch{7*\pi}{3})+j*sin(\bruch{7*\pi}{3}))=\bruch{1}{2}+\bruch{1}{2}*j*\wurzel{3}$ [/mm]

K=0 und K=3 stimmen mit der Lösung von Maple überein, aber K=2 müsste [mm] $\bruch{1}{2}-\bruch{1}{2}*j*\wurzel{3}$ [/mm] sein. Wie kommt da hin, dass der Term der durch den Cosinus gebildet wird zwei mal positiv ist?



        
Bezug
Komplexe Nullstellen: warum so kompliziert?
Status: (Antwort) fertig Status 
Datum: 23:06 Do 17.06.2010
Autor: Loddar

Hallo steem!


Warum so kompliziert? Es gilt:
[mm] $$x^3+1 [/mm] \ = \ [mm] (x+1)*\left(x^2-x+1\right)$$ [/mm]
Auf den zweiten Term mit der MBp/q-Formel losgehen ... fertig.


Gruß
Loddar


PS:

> [mm]$\Rightarrow \wurzel[3]{-1}=0[/mm]

Diese Gleichung ist natürlich Blödsinn!


Bezug
        
Bezug
Komplexe Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Do 17.06.2010
Autor: leduart

Hallo
K=2 :die [mm] 4\pi/3 [/mm] sind falsch es ist [mm] \pi+2\pi/3=5\pi/3 [/mm]
Gruss leduart

Bezug
                
Bezug
Komplexe Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:56 Do 17.06.2010
Autor: steem

Danke für den Hinweis! Jetzt passt alles ganz gut.

Mit der Gleichung hast du natürlich recht,  [mm] $\Rightarrow \wurzel[3]{-1}=0 [/mm] $ ist Blödsinn.
Aber [mm] $\Rightarrow \wurzel[3]{-1}=y$ [/mm] wäre doch richtig oder? :)



Bezug
                        
Bezug
Komplexe Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:05 Fr 18.06.2010
Autor: M.Rex

Hallo

Fast:

[mm] x^{3}+1=0\Rightarrow\wurzel[3]{-1}=\red{x} [/mm]

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]