matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Nullstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Komplexe Nullstellen
Komplexe Nullstellen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Nullstellen: Berechnung
Status: (Frage) beantwortet Status 
Datum: 16:10 So 25.11.2007
Autor: dk-netz

Aufgabe
Berechnen Sie die Nullstellen der folgenden Plynome!
Geben Sie je eine Faktorisierung der Polynome über [mm] \IC [/mm] und über [mm] \IR [/mm] an.
a) K [mm] \to [/mm] K, x [mm] \mapsto f_K(x):=4x^3+8x^2-11x+3 [/mm] für alle K [mm] \in {\IC, \IR} [/mm]
b) K [mm] \to [/mm] K, c [mm] \mapsto f_K(x):=6x^4-25x^3+32x^2+3x-10 [/mm] für alle K [mm] \in {\IC, \IR} [/mm]

Hallo,

die reellen Nullstellen lassen sich ja über Probieren und Polynomdivision berechnen.
Wie funktioniert das mit den komplexen Nullstellen.
Bei a) sind die reellen Nullstellen -3 und eine doppelte bei 1/2. Also sinds insgesamt 3 Nullstellen. Sind die in [mm] \IC [/mm] dann die selben? Oder wie kann ich diese berechnen?
Danke!

Gruß
Daniel

        
Bezug
Komplexe Nullstellen: Frage:
Status: (Frage) beantwortet Status 
Datum: 18:14 So 25.11.2007
Autor: dk-netz

So ich habs jetzt rausbekommen.
Die Nullstellen sind jetzt sowohl in R als auch in C klar.
Jetzt noch ne Frage zu den Faktorisierungen:
bei a) habe ich jetzt: [mm] (x+3)(x-\bruch{1}{2})^2*4. [/mm] Alle Nullstellen liegen im reellen Bereich. Dehalb müsste ja die Faktorisierung für R und C gleich sein, oder?
Bei b) kommt (x+0.5)(x-2/3)(x-2-i)(x-2+i)6. Jetzt die Frage: das scheint ja eher die Lösung für C zu sein. Muss ich dann für R einfach die qaudratische Gleichung, aus der das 2+i entstanden ist, stehen lassen?

Gruß
Daniel

Bezug
                
Bezug
Komplexe Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 So 25.11.2007
Autor: safrazap

Genau Daniel,
in der Zerlegung in [mm] \IR [/mm] bleibt der Faktor [mm] (x^2-4x+5) [/mm] so stehen.

Bezug
        
Bezug
Komplexe Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 So 25.11.2007
Autor: leduart

Wenn ein Polynom dritten Grades 3 reelle Nst. hat, dann sind das auch seine Komplexen Nst.
wie man anders als durch raten auf die ersten Nst. des Pol. 4ten Grades kommt. kann ich dir auch nicht sagen. es gibt ein irre kompliziertes Verfahren, das aber fast niemand beherrscht.
Wenn du 2 geraten hast kannst du durch ddividieren und den Rest dann mit Polynomdivision.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]