matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieKomplexe NST im 1-Kreis finden
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Komplexe NST im 1-Kreis finden
Komplexe NST im 1-Kreis finden < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe NST im 1-Kreis finden: Anleitung
Status: (Frage) beantwortet Status 
Datum: 20:04 So 13.02.2011
Autor: Lyrn

Hallo!
Ich verstehe nicht wie ich komplexe Nullstellen von einem Polynom berechnen kann.

Was ich bisher weiß:
Sagen wir mal wir haben das Polynom [mm] x^5-7. [/mm]

Dann liegen die Nullstellen im Radius von [mm] \wurzel[5]{7} [/mm] im Abstand von [mm] \bruch{360}{5}=72 [/mm] Grad um den Einheitskreis.
Nun weiß ich aber nicht wie ich diese Nullstellen "ablesen" kann. Ich weiß zwar dass es 4 Komplexe und 1 Reelle Nullstelle gibt, aber mehr auch nicht.

Wäre echt super wenn mir das einer ausführlich erklärt (den Wiki Artikel kenn ich, aber das hat mir nicht geholfen). Ich schreibe morgen Abend die Algebra und Zahlentheorie Klausur und das ist noch das einzige was ich nicht kann. Wenn dann eine Aufgabe wie "Ist [mm] \IQ(i*\wurzel[4]{2}) [/mm] der Zerfällungskörper vor [mm] x^4-2 \in \IQ [/mm] [x]" kommt schau ich doof aus der Wäsche :D

Gruß Lyrn!

        
Bezug
Komplexe NST im 1-Kreis finden: Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 So 13.02.2011
Autor: wieschoo


> Hallo!
>  Ich verstehe nicht wie ich komplexe Nullstellen von einem
> Polynom berechnen kann.
>
> Was ich bisher weiß:
>  Sagen wir mal wir haben das Polynom [mm]x^5-7.[/mm]
>  
> Dann liegen die Nullstellen im Radius von [mm]\wurzel[5]{7}[/mm] im
> Abstand von [mm]\bruch{360}{5}=72[/mm] Grad um den Einheitskreis.
>  Nun weiß ich aber nicht wie ich diese Nullstellen
> "ablesen" kann. Ich weiß zwar dass es 4 Komplexe und 1
> Reelle Nullstelle gibt, aber mehr auch nicht.

Allgemein hat ein Polynom [mm]f=X^a-t[/mm] folgende Nullstellen:
[mm]\sqrt[a]{t}*\zeta_a^0,\sqrt[a]{t}*\zeta_a^1,\ldots,\sqrt[a]{t}*\zeta_a^{a-1}[/mm]. Wobei [mm]\zeta_a[/mm] so eine a-te Einheitswurzel ist. Das ist immer so.
Bei dir konkret wären es die Nullstellen:
[mm]\sqrt[5]{7},\sqrt[5]{7}*\zeta_5^1,\sqrt[5]{7}*\zeta_5^2,\sqrt[5]{7}*\zeta_5^3,\sqrt[5]{7}*\zeta_5^4[/mm]

>  
> Wäre echt super wenn mir das einer ausführlich erklärt
> (den Wiki Artikel kenn ich, aber das hat mir nicht
> geholfen). Ich schreibe morgen Abend die Algebra und
> Zahlentheorie Klausur und das ist noch das einzige was ich
> nicht kann. Wenn dann eine Aufgabe wie "Ist
> [mm]\IQ(i*\wurzel[4]{2})[/mm] der Zerfällungskörper vor [mm]x^4-2 \in \IQ[/mm]
> [x]" kommt schau ich doof aus der Wäsche :D

Hier sind die Nullstellen:
[mm]\sqrt[4]{2},\sqrt[4]{2}*\zeta_4^1,\sqrt[4]{2}*\zeta_4^2,\sqrt[4]{2}*\zeta_4^3[/mm]
[mm]\zeta_4=i[/mm]
Damit musst du nur (salopp) das i und die [mm]\sqrt[4]{2}[/mm] an [mm]\IQ[/mm] adjungieren, da
[mm]\IQ (\sqrt[4]{2},\sqrt[4]{2}*\zeta_4^1,\sqrt[4]{2}*\zeta_4^2,\sqrt[4]{2}*\zeta_4^3)=\IQ(\sqrt[4]{2},\zeta_4^1)=\IQ(\sqrt[4]{2},i)[/mm]

>  
> Gruß Lyrn!

gruß zurück.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]