matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKomplexe Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Komplexe Matrizen
Komplexe Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Matrizen: Immer diagonalisierbar?
Status: (Frage) beantwortet Status 
Datum: 23:53 Mo 28.05.2007
Autor: Blueman

Hallo

Kurze Verständnisfrage:
Sind alle Matrixen mit komplexen Einträgen diagonalisierbar in [mm] \IC, [/mm] also durch Konjugation mit invertierbaren komplexen Matrizen auf Diagonalgestalt zu bringen?

Unser Übungsleiter hat sowas in der Art in der letzten Übung gesagt.. irgendwie kann ich mirs aber nicht vorstellen.. aber ein Gegenbeispiel find ich auch nicht. Ich glaube er meinte alle komplexen normalen Matrizen sind diagonalisierbar über [mm] \IC... [/mm]

Viele Grüße,
Blueman

        
Bezug
Komplexe Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:00 Di 29.05.2007
Autor: banachella

Hallo blueman,

deine Vermutung ist genau richtig: Alle komplexen normalen Matrizen sind diagonalisierbar über [mm] $\IC$. [/mm] Das Gegenbeispiel, dass du suchst, könnte z.B. [mm] $\pmat{1&1\\0&1}$ [/mm] sein. Diagonalisierbarkeit heißt ja nichts anderes, als dass es eine Basis aus Eigenvektoren gibt. Dies muss aber nur bei den normalen Matrizen der Fall sein.

Gruß, banachella

Bezug
                
Bezug
Komplexe Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 Di 29.05.2007
Autor: Blueman

Hallo

Vielen Dank für deine Antwort. Dein Gegenbeispiel wirft bei mir aber noch eine Frage auf:

Ich habe das charakteristische Polynom ausgerechnet durch
cp = det [mm] (\pmat{ 1 & 1 \\ 0 & 1 } [/mm] - [mm] \pmat{ x & 0 \\ 0 & x } [/mm] )  = [mm] (1-x)^2 [/mm] - 1

Faktorisiert ist dies = x(x-2).

D.h. das charakteristische Polynom zerfällt in paarweise verschiedene Linearfaktoren. Was aber laut unserer Vorlesung bedeuten würde, dass die Matrix diagonalisierbar wäre (steht auch im Fischer : S. 234, Satz 4.3.1)

Ich sehe aber ein, dass die Matrix nicht diagonalisierbar ist, denn sowohl der Eigenraum zu 0 als auch zu 2 besteht lediglich aus dem Nullvektor, sprich: geometr. Vielfachheit = 0.. also ist die algebraische Vielfachkeit ungleich der geometrischen Vielfachkeit, also ist die Matrix nicht diagonalisierbar.
Dies steht schon wieder im Gegensatz zur Vorlesung, da wir gesagt haben, dass jeder Eigenraum Dimension [mm] \ge [/mm] 1 hat (woraus auch obiger Satz folgt...)

Bitte nochmals um Hilfe! Irgendwas hab ich wohl missverstanden.

Viele Grüße,
Blueman

Bezug
                        
Bezug
Komplexe Matrizen: Rechenfehler :-(
Status: (Antwort) fertig Status 
Datum: 12:09 Di 29.05.2007
Autor: statler

Mahlzeit!

> Vielen Dank für deine Antwort. Dein Gegenbeispiel wirft bei
> mir aber noch eine Frage auf:
>  
> Ich habe das charakteristische Polynom ausgerechnet durch
>  cp = det [mm](\pmat{ 1 & 1 \\ 0 & 1 }[/mm] - [mm]\pmat{ x & 0 \\ 0 & x }[/mm]
> )  = [mm](1-x)^2[/mm] - 1

Hier hast du dich schlichtweg verrechnet!

Gruß aus HH-Harburg
Dieter


Bezug
                                
Bezug
Komplexe Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:23 Di 29.05.2007
Autor: Blueman

Ahh Ok! Dann vielen Dank euch beiden. Alles klar :-)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]