matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Intervallschachtelung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Intervallschachtelung
Komplexe Intervallschachtelung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Intervallschachtelung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:00 So 22.12.2013
Autor: Petrit

Aufgabe
Seien a [mm] \le [/mm] b und c [mm] \le [/mm] d reelle Zahlen. Dann wird das kompakt komplexe "Intervall" [a,b]x[c,d] definiert durch:
[a,b]x[c,d] := [mm] \{x+iy \in\IC | a \le x \le b \wedge c \le y \le d\}. [/mm]
Ferner wird eine Folge [mm] (I_{n})_{n\in\IN} [/mm] kompakter, nicht-leerer, komplexer Intervalle mit [mm] I_{n+1} \subseteq I_{n} [/mm] (für alle [mm] n\in\IN) [/mm] als (kompakte) komplexe Intervallschachtelung bezeichnet.
Zu zeigen:
(a) Der Durchschnitt jeder kompakten komplexen Intervallschachtelung [mm] ([a_{n},b_{n}] [/mm] x [mm] [c_{n},d_{n}])n\in\IN [/mm] ist nicht-leer.
(b) Falls zusätzlich [mm] |b_{n} [/mm] - [mm] a_{n}| [/mm] und [mm] |d_{n} [/mm] - [mm] c_{n}| [/mm] für n [mm] \to \infty [/mm] gegen 0 gehen, dann liegt im Durchschnitt all dieser Intervalle genau eine komplexe Zahl.

Hallo!
Ich habe bei dieser Aufgabe überhaupt keinen blassen Schimmer, wie ich diese angehen soll. Deshalb würde ich mich freuen, wenn ihr mir ein paar Tipps bzw. Hinweise geben könnten, wie ich das zeigen kann.

Ich danke schonmal und viele Grüße, Petrit!

        
Bezug
Komplexe Intervallschachtelung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:11 So 22.12.2013
Autor: Diophant

Hallo,

> Seien a [mm]\le[/mm] b und c [mm]\le[/mm] d reelle Zahlen. Dann wird das
> kompakt komplexe "Intervall" [a,b]x[c,d] definiert durch:
> [a,b]x[c,d] := [mm]\{x+iy \in\IC | a \le x \le b \wedge c \le y \le d\}.[/mm]

>

> Ferner wird eine Folge [mm](I_{n})_{n\in\IN}[/mm] kompakter,
> nicht-leerer, komplexer Intervalle mit [mm]I_{n+1} \subseteq I_{n}[/mm]
> (für alle [mm]n\in\IN)[/mm] als (kompakte) komplexe
> Intervallschachtelung bezeichnet.
> Zu zeigen:
> (a) Der Durchschnitt jeder kompakten komplexen
> Intervallschachtelung [mm]([a_{n},b_{n}][/mm] x
> [mm][c_{n},d_{n}])n\in\IN[/mm] ist nicht-leer.
> (b) Falls zusätzlich [mm]|b_{n}[/mm] - [mm]a_{n}|[/mm] und [mm]|d_{n}[/mm] - [mm]c_{n}|[/mm]
> für n [mm]\to \infty[/mm] gegen 0 gehen, dann liegt im Durchschnitt
> all dieser Intervalle genau eine komplexe Zahl.
> Hallo!
> Ich habe bei dieser Aufgabe überhaupt keinen blassen
> Schimmer, wie ich diese angehen soll. Deshalb würde ich
> mich freuen, wenn ihr mir ein paar Tipps bzw. Hinweise
> geben könnten, wie ich das zeigen kann.

Na ja, a) ist so dermaßen einfach, dass man Mühe hat, das formal zu zeigen. Du könntest ausnutzen, dass die einzelnen Intervalle solch einer komplexen Intervallschachtelung per Voraussetzung nichtleer sind (das sagt etwas über die [mm] a_n, b_n, c_n [/mm] und [mm] d_n [/mm] aus!). Welches ist wohl der Durchschnitt?

Bei b) kann man das Sandwich-Lemma verwenden.

Gruß, Diophant

Bezug
        
Bezug
Komplexe Intervallschachtelung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 So 22.12.2013
Autor: Helbig

Hallo Petrit,

zu a)
Die Formulierung mit dem "Durchschnitt jeder komplexen Intervallschachtelung" verstehe ich nicht. Ich denke aber, es heißt:
    Die Menge [mm] $[a_n; b_n]\times [c_n; d_n]$ [/mm] ist für jedes $n$ nichtleer.
Dies ist leicht zu zeigen, indem man ein Element des kartesischen Produktes angibt.

zu b) Übertrage den Satz der reellen Intervallschachtelung auf's Zweidimensionale.

Grüße,
Wolfgang

Bezug
        
Bezug
Komplexe Intervallschachtelung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:28 Mo 23.12.2013
Autor: fred97

Zu a):

Wähle in jedem [mm] I_n [/mm] einen Punkt [mm] z_n. [/mm] Die Folge [mm] (z_n) [/mm] ist beschränkt, also besitzt [mm] (z_n) [/mm] nach Bolzano- Weierstraß einen Häufungspunkt [mm] z_0. [/mm]

Zeige: [mm] z_0 \in I_n [/mm] für alle n.

Zu b): sei [mm] (z_n) [/mm] wie oben. Zeige: [mm] (z_n) [/mm] ist konvergent und

[mm] \bigcap_{n=1}^{\infty}I_n=\{ \limes_{n\rightarrow\infty}z_n \} [/mm]

FRED

Bezug
        
Bezug
Komplexe Intervallschachtelung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:11 Mo 23.12.2013
Autor: Petrit

Super, danke für die vielen Tipps und Hinweise. Hab es nun hinbekommen!
Frohe Weihnachten und einen guten Rutsch euch allen!

Viele Grüße, Petrit!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]