matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesKomplexe Gleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Komplexe Gleichungssystem
Komplexe Gleichungssystem < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:31 Mi 28.12.2011
Autor: Lu-

Aufgabe
Bestimme alle komplexen Lösungen des Glgs.

[mm] z_1 [/mm] +i [mm] z_2 [/mm] +(1 + i) [mm] z_3 [/mm] = i − 1
(2 + i) [mm] z_1 [/mm] +(−3 + i) [mm] z_2 +2iz_3 [/mm] = −5


Gauß
[mm] z_1 +iz_2 [/mm] +(1 + i) [mm] z_3 [/mm] = i − 1
(2+i) [mm] z_2 [/mm] + (1+i)  [mm] z_3 [/mm] = 2+i

[mm] L_0 [/mm] (Kern) bestimmen
[mm] z_1 [/mm] +i [mm] z_2 [/mm] + (1 + i)  [mm] z_3 [/mm] = 0
[mm] (2+i)z_2 [/mm] + (1+i) [mm] z_3 [/mm] = 0
Setze [mm] z_2 [/mm] = t und rechne aus
[mm] L_0 [/mm] = [mm] \{\vektor{i+4 \\ 1 \\ \frac{-3+i}{2}} t | t \in \IC \} [/mm]

[mm] L_y [/mm] = [mm] L_0 [/mm] + spezielle Lösung

Setzte [mm] z_3 [/mm] =0
[mm] z_1 [/mm] +i [mm] z_2 [/mm]  = i − 1
(2+i) [mm] z_2 [/mm]  = 2+i
-> [mm] z_2 [/mm] = 1
-> [mm] z_1 [/mm] = -1

Wie gebe ich nun die Lösung an ???
Ganz liebe Grüße

        
Bezug
Komplexe Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 05:59 Mi 28.12.2011
Autor: Al-Chwarizmi


> Bestimme alle komplexen Lösungen des Glgs.
>  
> [mm]z_1[/mm] +i [mm]z_2[/mm] +(1 + i) [mm]z_3[/mm] = i − 1
>  (2 + i) [mm]z_1[/mm] +(−3 + i) [mm]z_2 +2iz_3[/mm] = −5
>  
> Gauß
>  [mm]z_1 +iz_2[/mm] +(1 + i) [mm]z_3[/mm] = i − 1
>  (2+i) [mm]z_2[/mm] + (1+i)  [mm]z_3[/mm] = 2+i
>  
> [mm]L_0[/mm] (Kern) bestimmen
>  [mm]z_1[/mm] +i [mm]z_2[/mm] + (1 + i)  [mm]z_3[/mm] = 0
>  [mm](2+i)z_2[/mm] + (1+i) [mm]z_3[/mm] = 0
>  Setze [mm]z_2[/mm] = t und rechne aus
>  [mm]L_0[/mm] = [mm]\{\vektor{i+4 \\ 1 \\ \frac{-3+i}{2}} t | t \in \IC \}[/mm]
>  
> [mm]L_y[/mm] = [mm]L_0[/mm] + spezielle Lösung
>  
> Setzte [mm]z_3[/mm] =0
>  [mm]z_1[/mm] +i [mm]z_2[/mm]  = i − 1
>  (2+i) [mm]z_2[/mm]  = 2+i
>  -> [mm]z_2[/mm] = 1

>  -> [mm]z_1[/mm] = -1

>  
> Wie gebe ich nun die Lösung an ???
>  Ganz liebe Grüße


Hallo Lu- ,

es scheint, dass in deiner Lösung die erste
Komponente [mm] z_1 [/mm] der homogenen Lösung falsch ist.
Nachher ist es so, wie du schon beschrieben
hast:

   $ [mm] L_y [/mm] $ = $ [mm] L_0 [/mm] $ + spezielle Lösung

LG   Al-Chw.

Bezug
                
Bezug
Komplexe Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:47 Mi 28.12.2011
Autor: Lu-

$ [mm] L_y [/mm] $ = $ [mm] L_0 [/mm] $ + spezielle Lösung
[mm] L_y [/mm] =  [mm] \vektor{2 \\ 1 \\ \frac{-3+i}{2}} [/mm] t + [mm] \vektor{-1 \\ 1 \\ 0} [/mm]
So?
Was ist denn allegeim besser? Die Lösung mittels homogene Lösung und spezielle Lösung zu errechnen oder die einzelnen Komponenten [mm] z_1=..., z_2=...,z_3=... [/mm] zu errechnen mit Variabeln, so dass man eine setzte z.B. [mm] z_3=a+ib. [/mm] In dem Fall wäre die andere Methode mühsamer gewesen.
Wie weiß ich welche WANN besser zu verwenden ist?

Bezug
                        
Bezug
Komplexe Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 Mi 28.12.2011
Autor: Al-Chwarizmi


> [mm]L_y[/mm] = [mm]L_0[/mm] + spezielle Lösung
> [mm]L_y[/mm] =  [mm]\vektor{2 \\ 1 \\ \frac{-3+i}{2}}[/mm] t + [mm]\vektor{-1 \\ 1 \\ 0}[/mm]
>  
> So?

Ja. Ich würde empfehlen, den Vektor  [mm] \vektor{2 \\ 1 \\ \frac{-3+i}{2}} [/mm] noch mit 2 zu
erweitern zu:
          [mm] \vektor{4 \\ 2 \\ -3+i} [/mm]


>  Was ist denn allgemein besser? Die Lösung mittels homogene
> Lösung und spezielle Lösung zu errechnen oder die
> einzelnen Komponenten [mm]z_1=..., z_2=...,z_3=...[/mm] zu errechnen
> mit Variabeln, so dass man eine setzte z.B. [mm]z_3=a+ib.[/mm] In
> dem Fall wäre die andere Methode mühsamer gewesen.
> Wie weiß ich welche WANN besser zu verwenden ist?

Da der Faktor t beliebige komplexe Werte annehmen darf,
ist die Darstellung mit Real- und Imaginärteil wohl eher
ungeeignet bei dieser Sorte von Aufgaben.

LG   Al-Chw.


Bezug
                                
Bezug
Komplexe Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 Mi 28.12.2011
Autor: Lu-

Ich hätte noch eine Frage, aber nicht speziell zu dem Bsp.
Was ist wenn mir als homogene Lösung nur [mm] z_1=z_2=z_3=0 [/mm] rauskommt? Dann wäre die Lösung nur die spezielle Lösung?

Ich habe z.B
[mm] i*z_1 [/mm] + [mm] 2iz_2 [/mm] + (1+i) * [mm] z_3 [/mm] =0
[mm] iz_2 [/mm] + (-1-2i) [mm] z_3 [/mm] =0
(2-3i) [mm] z_3 [/mm] =0
als homogene STuffenform
LG

Bezug
                                        
Bezug
Komplexe Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Mi 28.12.2011
Autor: MathePower

Hallo Lu-,

> Ich hätte noch eine Frage, aber nicht speziell zu dem
> Bsp.
>  Was ist wenn mir als homogene Lösung nur [mm]z_1=z_2=z_3=0[/mm]
> rauskommt? Dann wäre die Lösung nur die spezielle
> Lösung?
>  


Ja.


> Ich habe z.B
>  [mm]i*z_1[/mm] + [mm]2iz_2[/mm] + (1+i) * [mm]z_3[/mm] =0
>  [mm]iz_2[/mm] + (-1-2i) [mm]z_3[/mm] =0
>  (2-3i) [mm]z_3[/mm] =0
>  als homogene STuffenform
>  LG


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]