matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Gleichung lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Gleichung lösen
Komplexe Gleichung lösen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Gleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Di 17.05.2011
Autor: noname2k

Aufgabe
Berechne alle komplexen Lösungen für [mm] z^8=-z^4 [/mm] und stellen Sie die Lösungen in Polardarstellung dar.

Hallo,

das habe ich bis jetzt gemacht:

[mm] z^8+z^4=0 [/mm]
[mm] z^4(z^4+1)=0 [/mm]

Jetzt möchte ich [mm] z^4+1=0 [/mm] ausrechnen und habe mit [mm] x:=z^2 [/mm] substituiert.

[mm] x^2+1=0 [/mm]
[mm] x_{1}=i \wedge x_{2}=-i [/mm]

Jetzt Rücksubstitution:
[mm] z_{1,2}=\wurzel{i} \wedge z_{3,4}=\wurzel{-i} [/mm]

[mm] z_{1,2}=\wurzel{0+1i}=\pm(\wurzel{\bruch{1}{2}}+\wurzel{\bruch{-1}{2}}i)=\pm(\bruch{1}{\wurzel{2}}+\bruch{i}{\wurzel{2}})=\pm(\bruch{1+i}{\wurzel{2}}) [/mm]

[mm] z_{3,4}=\wurzel{0-1i}=\pm(\wurzel{\bruch{1}{2}}-\wurzel{\bruch{1}{2}}i)=\pm(\bruch{1}{\wurzel{2}}-\bruch{i}{\wurzel{2}})=\pm(\bruch{1-i}{\wurzel{2}}) [/mm]

Habe hoffentlich keine Fehler beim abtippen gemacht aber das müsste doch soweit korrekt sein oder?
Kann mir jemand noch einen Anstoss geben wie ich nun zu der Polardarstellung komme?
Wenn z=a+bi ist, berechnet man ja arg(z) z.b. mit [mm] arctan(\bruch{b}{a}) [/mm] für a>0 um dann den Winkel für die Polardarstellung zu bekommen aber ich weiß nicht so genau wie ich das auf meine Ergebnisse anwenden muss.

Das habe ich versucht:
[mm] \pm(\wurzel{\bruch{1}{2}}+\wurzel{\bruch{-1}{2}}i) [/mm] kann ich hier sagen das b>0 ist???
Dann hab ich [mm] arg(z)=arctan(\bruch{\wurzel{\bruch{-1}{2}}}{\wurzel{\bruch{1}{2}}}) [/mm] versucht aber da ist der Zähler ja negativ. Muss ich davon jetzt auch noch die komplexen Lösungen berechnen und damit weitermachen oder geht man an die Polardarstellung anders heran?

Schonmal danke für Tipps.

        
Bezug
Komplexe Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Di 17.05.2011
Autor: kushkush

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo,


deine Lösungen stimmen!

> polarform berechnen

>Ansatz

Das ist falsch, $\sqrt{\frac{-1}{2}}$ hier kannst du im Komplexen noch ein i rausholen!   Deine b's wären jeweils $\pm \frac{1}{\sqrt{2}}$!

eine zahl muss in polar und koordinatenform im selben Quadranten liegen. Schaue in welchem Quadranten deine Zahl liegt, rechne mit $arctan\frac{b}{a}$ das "falsche" Argument aus und mit $\sqrt{a^{2}+b^{2}$ den Betrag und wandle die Zahl wieder in Normalform züruck. Dann siehst du direkt um wie viel du das Argument anpassen musst in der Polarform!  


Gruss
kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]