matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Gleichung e^{z}
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Gleichung e^{z}
Komplexe Gleichung e^{z} < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Gleichung e^{z}: LÖsungsweg/Ansatz
Status: (Frage) beantwortet Status 
Datum: 22:36 Mo 22.02.2010
Autor: Loewenzahn

Aufgabe
[mm] e^{z}=i-1. [/mm] Bestimmen Sie alle Lösungen in der Form z=x+y*i
Lösung;
0,5*ln(2)+i(0.75 [mm] \pi+2\pi [/mm] k) für k=0,+-1,+-2,...

Ich rechne gerade ein paar alte Klausuren durch, und da bin ich auf diese Aufgabe gestoßen...Von der Fragestellung her passt sie zu dem, was wir gelernt haben...alle möglichen Lösungen von einer Komplexen GL angeben...allerdings waren das bei uns GL die die Form [mm] z^{n} [/mm] hatten und deren Lösungen auf dem EInheitskreis lagen....

Ich frage mich, wie man denn nun das hier löst...denn wenn sowas drankommt hätte ich noch nicht mal den Hauch einer Ahnung was ich mit dem "e" anfange.....
Ich dachte an logarithmieren...aber dann habe ich ln (i-1) = z und dann???

Vielen DAnk für's Helfen!

        
Bezug
Komplexe Gleichung e^{z}: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Mo 22.02.2010
Autor: zahllos

Hallo,

ein Patentrezept für komplexe Gleichungen habe ich nicht, aber hier kannst du folgendermaßen vorgehen:
[mm] e^z [/mm] = [mm] e^{Re(z)} e^{iIm(z)} [/mm] und: i-1 = [mm] \wurzel{2} e^{i\frac{3}{4} \pi} [/mm]

Vergleich der Beträge liefert: Re(z) = [mm] ln(\wurzel{2}) [/mm] und Im(z) = [mm] {\frac{3}{4} \pi}+2k\pi [/mm]

Bezug
        
Bezug
Komplexe Gleichung e^{z}: Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 Mo 22.02.2010
Autor: fencheltee


> [mm]e^{z}=i-1.[/mm] Bestimmen Sie alle Lösungen in der Form
> z=x+y*i
>  Lösung;
>  0,5*ln(2)+i(0.75 [mm]\pi+2\pi[/mm] k) für k=0,+-1,+-2,...
>  Ich rechne gerade ein paar alte Klausuren durch, und da
> bin ich auf diese Aufgabe gestoßen...Von der Fragestellung
> her passt sie zu dem, was wir gelernt haben...alle
> möglichen Lösungen von einer Komplexen GL
> angeben...allerdings waren das bei uns GL die die Form
> [mm]z^{n}[/mm] hatten und deren Lösungen auf dem EInheitskreis
> lagen....
>  
> Ich frage mich, wie man denn nun das hier löst...denn wenn
> sowas drankommt hätte ich noch nicht mal den Hauch einer
> Ahnung was ich mit dem "e" anfange.....
>  Ich dachte an logarithmieren...aber dann habe ich ln (i-1)
> = z und dann???

das logarithmieren geht auch, wobei das im komplexen anders abläuft.
[mm] e^z=w [/mm]
[mm] z=ln|w|+i*(arg(w)+k2\pi) [/mm]

>  
> Vielen DAnk für's Helfen!


gruß tee

Bezug
                
Bezug
Komplexe Gleichung e^{z}: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:30 Mo 22.02.2010
Autor: Loewenzahn

Hey, wieder was gelernt!
Danke,
LZ

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]