matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Gleichung 2
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Gleichung 2
Komplexe Gleichung 2 < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Gleichung 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:58 So 01.02.2015
Autor: RudiRabenkopf

Aufgabe
Bestimmen Sie alle komplexen Zahlen z mit:

a) [mm] e^{z} [/mm] - e  = 0

b) [mm] (z+i)(z^{2}+i) [/mm] = 0

Hallo,

ich versuche mich gerade an dieser Aufgabe. Ich komme nicht drauf, wie ich diese lösen kann ?!?

Aufgabe a) da bin ich KOMPLETT überfraget. wie soll ich da anfangen...habt ihr tipps für mich ?

Aufgabe b) da hätte ich als erstes an ausklammen gedacht. dann erhalte ich [mm] z^{3} [/mm] + [mm] i*z^{2} [/mm] + 2i + [mm] i^{2} [/mm]

nun eine polynomdivision ? dann müsste ich zuerst "raten" welche die erste nullstelle ist, damit ich überhaupt loslegen kann.

da habe ich aber nun werte von -3 bis +3 eingegeben und ich komme nicht auf 0  ?!?


könntet ihr mir weiterhelfen ?



gruß rudi

        
Bezug
Komplexe Gleichung 2: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 So 01.02.2015
Autor: fred97


> Bestimmen Sie alle komplexen Zahlen z mit:
>  
> a) [mm]e^{z}[/mm] - e  = 0
>  
> b) [mm](z+i)(z^{2}+i)[/mm] = 0
>  Hallo,
>  
> ich versuche mich gerade an dieser Aufgabe. Ich komme nicht
> drauf, wie ich diese lösen kann ?!?
>  
> Aufgabe a) da bin ich KOMPLETT überfraget. wie soll ich da
> anfangen...habt ihr tipps für mich ?
>  
> Aufgabe b) da hätte ich als erstes an ausklammen gedacht.
> dann erhalte ich [mm]z^{3}[/mm] + [mm]i*z^{2}[/mm] + 2i + [mm]i^{2}[/mm]
>  
> nun eine polynomdivision ? dann müsste ich zuerst "raten"
> welche die erste nullstelle ist, damit ich überhaupt
> loslegen kann.
>  
> da habe ich aber nun werte von -3 bis +3 eingegeben und ich
> komme nicht auf 0  ?!?
>  
>
> könntet ihr mir weiterhelfen ?
>  

Zu a):  [mm]e^{z}[/mm] - e  = 0  [mm] \gdw e^{z-1}=1. [/mm] Für welche Zahlen w gilt [mm] e^w=1 [/mm] ?


Zu b):  $ [mm] (z+i)(z^{2}+i) [/mm] $ = 0   [mm] \gdw [/mm] z+i=0 oder [mm] z^2+i=0. [/mm]

FRED

>
>
> gruß rudi


Bezug
                
Bezug
Komplexe Gleichung 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:24 So 01.02.2015
Autor: RudiRabenkopf

zu b )


Stimmt, ist ja eine Multiplikation zweier Terme und ist ein Faktor 0, ist das Ergebnis = 0



heißt das, ich kann es mir aussuchen welchen ich als 0 nehme ? der quadratische Term = 0 wären ja schon 2 Nullstellen.



daher nehme ich mal z+i = 0


heißt das, ich kann z+i nun für meine polynomdivision nehmen ?


oder habe ich mit z+i meine nullstelle und nehme nun [mm] z^2 [/mm] + 1 = 0 und löse das mit der pq formel für die anderen beiden ?


gruß rudi


Bezug
                        
Bezug
Komplexe Gleichung 2: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 So 01.02.2015
Autor: Infinit

Hallo Rudi,
bei der Aufgabe b) brauchst Du keine Polynomdivision mehr, denn Du hast die Gleichung ja bereits in Form von Faktoren gegeben.
Es wird ingesamt drei Lösungen geben.
Die eine Lösung bekommst Du für
[mm] z + i = 0 [/mm],
die beiden anderen (denn es ist eine quadratische Gleichung in z) für
[mm]z^2 + 1 = 0 [/mm]
Viele Grüße,
Infinit

Bezug
                                
Bezug
Komplexe Gleichung 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Mo 09.02.2015
Autor: RudiRabenkopf

Die eine Lösung bekommst Du für
$ z + i = 0 $,
die beiden anderen (denn es ist eine quadratische Gleichung in z) für
$ [mm] z^2 [/mm] + 1 = 0 $



d.h.

z1= -i


und +- 1 für z2,3 ?


gruß rudi

Bezug
                                        
Bezug
Komplexe Gleichung 2: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Mo 09.02.2015
Autor: Gonozal_IX

Hiho,

ja, allerdings ist rein technisch die Bezeichnung [mm] z_1,z_2,z_3 [/mm] falsch, da es rein formell ganz andere Variablen sind.
Das macht man vielleicht in der Schule so, in der Uni aber nicht mehr, da schreibt man Dinge so:

$z = [mm] \ldots \vee z=\ldots$ [/mm]

Gruß,
Gono

Bezug
                
Bezug
Komplexe Gleichung 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Mo 09.02.2015
Autor: RudiRabenkopf

$ [mm] e^{z} [/mm] $ - e  = 0  $ [mm] \gdw e^{z-1}=1. [/mm] $ Für welche Zahlen w gilt $ [mm] e^w=1 [/mm] $ ?

für [mm] e^{0} [/mm] ?

Bezug
                        
Bezug
Komplexe Gleichung 2: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Mo 09.02.2015
Autor: fred97


>  [mm]e^{z}[/mm] - e  = 0  [mm]\gdw e^{z-1}=1.[/mm] Für welche Zahlen w gilt
> [mm]e^w=1[/mm] ?
>
> für [mm]e^{0}[/mm] ?

Nein. Für alle w [mm] \in \IC [/mm] der Form

  $2 k [mm] \pi [/mm] i $  mit   $ k [mm] \in \IZ$ [/mm]

FRED


Bezug
                                
Bezug
Komplexe Gleichung 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:38 Mo 09.02.2015
Autor: RudiRabenkopf

und was heißt das nun auf meine aufgabe bezogen ?

Bezug
                                        
Bezug
Komplexe Gleichung 2: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Mo 09.02.2015
Autor: fred97


> und was heißt das nun auf meine aufgabe bezogen ?

Das bedeutet:

$ [mm] e^{z} [/mm]  - e  = 0   [mm] \gdw [/mm] z [mm] \in \{1+2 k \pi i : k \in \IZ\}$ [/mm]

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]