matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Gleichung
Komplexe Gleichung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:21 Do 05.11.2009
Autor: jboss

Aufgabe
Bestimmen Sie alle $z [mm] \in \IC$ [/mm] mit [mm] $z^3 [/mm] = [mm] \overline{z}$ [/mm]

Hallo zusammen,
es geht also um obige Aufgabe. Irgendwie tue ich mir schwer mit dem Lösen von Gleichungen in [mm] $\IC$ [/mm]

Meine Idee: Wenn [mm] $z^3 [/mm] = [mm] \overline{z}$, [/mm] so müsste ja auch der Absolutbetrag übereinstimmen. Also:
$$
[mm] |z^3| [/mm] = [mm] |\overline{z}| \gdw |z|^3 [/mm] = [mm] |\overline{z}| \gdw |a+ib|^3 [/mm] = |a-ib| [mm] \gdw (\wurzel{a^2 + b^2})^3 [/mm] = [mm] \wurzel{a^2 + (-b)^2} \gdw (\wurzel{a^2 + b^2})^2 [/mm] = 1 [mm] \gdw a^2 [/mm] + [mm] b^2 [/mm] = 1$$
Kann ich jetzt einfach z.B nach $a$ umstellen und das in die Ursprungsgleichung einsetzen?

Viele Grüße
Jakob

        
Bezug
Komplexe Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Do 05.11.2009
Autor: Denny22


> Bestimmen Sie alle [mm]z \in \IC[/mm] mit [mm]z^3 = \overline{z}[/mm]
>  Hallo
> zusammen,
>  es geht also um obige Aufgabe. Irgendwie tue ich mir
> schwer mit dem Lösen von Gleichungen in [mm]\IC[/mm]
>  
> Meine Idee: Wenn [mm]z^3 = \overline{z}[/mm], so müsste ja auch der
> Absolutbetrag übereinstimmen. Also:
> [mm][/mm]
>  [mm]|z^3|[/mm] = [mm]|\overline{z}| \gdw |z|^3[/mm] = [mm]|\overline{z}| \gdw |a+ib|^3[/mm]
> = |a-ib| [mm]\gdw (\wurzel{a^2 + b^2})^3[/mm] = [mm]\wurzel{a^2 + (-b)^2} \gdw (\wurzel{a^2 + b^2})^2[/mm]
> = 1 [mm]\gdw a^2[/mm] + [mm]b^2[/mm] = 1[mm][/mm]
>  Kann ich jetzt einfach z.B nach [mm]a[/mm] umstellen und das in die
> Ursprungsgleichung einsetzen?

Zunächst stellst Du fest, dass $z=0$ eine Lösung ist. Nun betrachten wir [mm] $z\neq [/mm] 0$. Betrachte [mm] $z=re^{i\varphi}$ [/mm] und [mm] $\overline{z}=re^{-i\varphi}$. [/mm] Nun gilt:

[mm] $z^3=\overline{z}$ [/mm]
[mm] $\Longleftrightarrow\quad z=\left(\overline{z}\right)^{\frac{1}{3}}$ [/mm]
[mm] $\Longleftrightarrow\quad re^{i\varphi}=\left(re^{-i\varphi}\right)^{\frac{1}{3}}$ [/mm]
[mm] $\Longleftrightarrow\quad re^{i\varphi}=r^{\frac{1}{3}}e^{-i\frac{\varphi+2k\pi}{3}}$ [/mm] für $k=0,1,2$
[mm] $\Longleftrightarrow\quad r=r^{\frac{1}{3}}$ [/mm] und [mm] $e^{i\varphi}=e^{-i\frac{\varphi+2k\pi}{3}}$ [/mm] für $k=0,1,2$
[mm] $\Longleftrightarrow\quad [/mm] r=1$ und [mm] $\cos(\varphi)+i\sin(\varphi)=\cos(-\frac{\varphi+2k\pi}{3})+i\sin(-\frac{\varphi+2k\pi}{3})$ [/mm] für $k=0,1,2$
[mm] $\Longleftrightarrow\quad [/mm] r=1$ und [mm] $\cos(\varphi)=\cos(-\frac{\varphi+2k\pi}{3})$ [/mm] und [mm] $\sin(\varphi)=\sin(-\frac{\varphi+2k\pi}{3})$ [/mm] für $k=0,1,2$

So nun musst Du für jedes $k=0,1,2$ die möglichen [mm] $\varphi$ [/mm] bestimmen, die jeweils die zwei Bedingungen erfüllen. Für $k=0$ erhälst Du beispielsweise [mm] $\varphi\in\{0,\frac{3\pi}{2},3\pi\}$. [/mm]

> Viele Grüße
>  Jakob


Bezug
        
Bezug
Komplexe Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Do 05.11.2009
Autor: fred97

Es gilt:

             [mm] $z^3 [/mm] = [mm] \overline{z} \gdw [/mm] z=0$ oder [mm] z^4 [/mm] =1

Beweis:

1. Sei   [mm] $z^3 [/mm] = [mm] \overline{z}$ [/mm] . Dann ist z=0 eine Lösung dieser Gleichung. Sei nun z [mm] \not= [/mm] 0. Dann folgt aus [mm] $|z|^3= |\overline{z}|= [/mm] |z|$, dass |z|=1 ist.

Multipliziert man [mm] $z^3 [/mm] = [mm] \overline{z}$ [/mm]  mit z, so erhält man
[mm] $z^4 =\overline{z}z= [/mm] 1$

2. Sei z=0 oder [mm] z^4 [/mm] = 1. z=0 erfüllt    [mm] $z^3 [/mm] = [mm] \overline{z}$. [/mm] Sei also [mm] z^4 [/mm] = 1. Dann ist |z|=1. Multipliziert man [mm] z^4=1 [/mm] mit [mm] \overline{z}, [/mm] so ergibt sich

              [mm] $\overline{z} [/mm] = [mm] \overline{z}*z*z^3= z^3$ [/mm]

FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]