Komplexe Funktionen, Zeichnen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [Dateianhang nicht öffentlich] |
Hallo!
Ich möchte euch noch einmal wegen obiger Aufgabe etwas fragen.
Zu a): Ich habe ein wenig Probleme, solche Skizzen anzufertigen (also was alles von den Bedingungen eingeschlossen wird), habt ihr da Tipps?
Definitionsbereich: y läuft von 0 bis 1, und x "fängt immer erst beim y-Wert an" (Wenn ich das jetzt in die Gaußsche Zahlenebene für jedes y einzeln einzeichnen würde), also praktisch begrenzt die Funktion $y = x$ schonmal den Definitionsbereich. Wenn ich jetzt den zweiten Teil der Ungleichung umstelle, erhalte ich
$x = [mm] \sqrt{2-y^{2}} \gdw x^{2} [/mm] = [mm] 2-y^{2} \gdw [/mm] y = [mm] \sqrt{2-x^{2}}$
[/mm]
d.h. der Definitionsbereich wird von der x-Achse der Funktion y = x und der Funktion y = [mm] \sqrt{2-x^{2}} [/mm] in der Gaußschen Zahlenebene begrenzt.
Wertebereich: $f(z) = [mm] 2*e^{i*\bruch{\pi}{4}}*r*e^{i*\phi} [/mm] + i = [mm] 2*r*e^{\bruch{\pi}{4}+\phi}$
[/mm]
D.h. der gesamte Wertebereich wird im Vergleich zum Definitionsbereich um 2 gestaucht (ausgehend von (0,0)) und dann um 45° (ausgehend von (0,0)) nach "links" gedreht?
Zu b)
Hier wollte ich gern einen Ansatz von euch haben, wie ich das am besten begründen könnte. Soll ich einfach sagen dass [mm] e^{i*\bruch{\pi}{4}} [/mm] = [mm] (\bruch{sqrt(2)}{2} [/mm] + [mm] \bruch{\sqrt{2}}{2}*i) [/mm] ist und somit die Funktion nur eine aus stetigen Funktionen (nämlich konstante*identische + konstante) zusammengesetzt ist?
Was ist eigentlich der Unterschied zwischen im Innern von D differenzierbar zu sein und holomorph zu sein? Ist bei holomorph der "Rand" von D mit inbegriffen?
Vielen Dank für Eure Hilfe,
Stefan.
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:22 Di 21.04.2009 | Autor: | rainerS |
Hallo Stefan!
> [Dateianhang nicht öffentlich]
> Hallo!
>
> Ich möchte euch noch einmal wegen obiger Aufgabe etwas
> fragen.
> Zu a): Ich habe ein wenig Probleme, solche Skizzen
> anzufertigen (also was alles von den Bedingungen
> eingeschlossen wird), habt ihr da Tipps?
>
> Definitionsbereich: y läuft von 0 bis 1, und x "fängt immer
> erst beim y-Wert an" (Wenn ich das jetzt in die Gaußsche
> Zahlenebene für jedes y einzeln einzeichnen würde), also
> praktisch begrenzt die Funktion [mm]y = x[/mm] schonmal den
> Definitionsbereich. Wenn ich jetzt den zweiten Teil der
> Ungleichung umstelle, erhalte ich
>
> [mm]x = \sqrt{2-y^{2}} \gdw x^{2} = 2-y^{2} \gdw y = \sqrt{2-x^{2}}[/mm]
>
> d.h. der Definitionsbereich wird von der x-Achse der
> Funktion y = x und der Funktion y = [mm]\sqrt{2-x^{2}}[/mm] in der
> Gaußschen Zahlenebene begrenzt.
Das ist richtig, allerdings machst du es dir ein bischen zu schwer. Zwei Hinweise: 1. sind sowohl x als auch y immer [mm] $\ge [/mm] 0$, der Definitionsbereich liegt also im 1. Quadranten. 2. ist die zweite Bedingung durch [mm] $x^2+y^2\le2$ [/mm] gegeben; der Definitionsbereich liegt also innerhalb des Viertelkreises mit Radius [mm] $\sqrt{2}$. [/mm] Zusammen mit den drei begrenzenden Geraden $y=0$, $y=1$ und $y=x$ hast du das schnell hingemalt.
>
> Wertebereich: [mm]f(z) = 2*e^{i*\bruch{\pi}{4}}*r*e^{i*\phi} + i = 2*r*e^{\bruch{\pi}{4}+\phi}[/mm]
Da hast du in der zweiten Identität zweimal das i vergessen:
[mm]f(z) = 2*e^{i*\bruch{\pi}{4}}*r*e^{i*\phi} + i = 2*r*e^{\red{i}(\bruch{\pi}{4}+\phi)}\red{+i}[/mm]
>
> D.h. der gesamte Wertebereich wird im Vergleich zum
> Definitionsbereich um 2 gestaucht (ausgehend von (0,0)) und
> dann um 45° (ausgehend von (0,0)) nach "links" gedreht?
Nicht gestaucht, gestreckt! Die Drehung ist OK, aber dann musst du noch i addieren, also um 1 nach oben verschieben.
> Zu b)
>
> Hier wollte ich gern einen Ansatz von euch haben, wie ich
> das am besten begründen könnte. Soll ich einfach sagen dass
> [mm]e^{i*\bruch{\pi}{4}}[/mm] = [mm](\bruch{sqrt(2)}{2}[/mm] +
> [mm]\bruch{\sqrt{2}}{2}*i)[/mm] ist und somit die Funktion nur eine
> aus stetigen Funktionen (nämlich konstante*identische +
> konstante) zusammengesetzt ist?
Das reicht nicht, denn aus der Stetigkeit folgt noch nicht die Differenzierbarkeit. Aber das Argument gilt genauso: es handelt sich um eine lineare Abbildung, die ist natürlich diff'bar.
> Was ist eigentlich der Unterschied zwischen im Innern von
> D differenzierbar zu sein und holomorph zu sein? Ist bei
> holomorph der "Rand" von D mit inbegriffen?
Nein. Holomorph in D bedeutet, dass die Funktion in ganz D komplex differenzierbar ist, dass also der komplexe Limes
[mm] \lim_{z\to z_0} \bruch{f(z)-f(z_0)}{z-z_0} [/mm]
für alle Punkte [mm] $z_0\in [/mm] D$ existiert. Und das ist bei einer solchen linearen Abbildung fast trivial
(Zum Unterschied: Holomorph in einem Punkt [mm] $z_0$ [/mm] bedeutet, dass f in [mm] $z_0$ [/mm] und in einer offenen Umgebung von [mm] $z_0$ [/mm] komplex diff'bar ist.)
Viele Grüße
Rainer
|
|
|
|
|
Hallo rainerS,
vielen Dank für deine Antwort! Das habe ich jetzt verstanden
Grüße, Stefan.
|
|
|
|