matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeKomplexe Extremwertaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Extremwertprobleme" - Komplexe Extremwertaufgabe
Komplexe Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Extremwertaufgabe: Lösung gesucht
Status: (Frage) beantwortet Status 
Datum: 13:11 So 18.09.2005
Autor: Lara18

Hallo,
ich bin im GK 12 und komme mit dieser Aufgabe echt nicht weiter.
kann mir jeman ausführlich helfen? bin doch nicht so ein mathegenie ;-).
also:

"einem viertelkreis mit dem radius r=5cm wird ein dreieck OPQ einbeschriebeen. für welchen winkel alpha wir der inhalt des dreiecks maximal?"

ich bitte euch wirklich, mir zu helfen. peile null.
liebe grüße und vielen dank schonmal.

Lara

        
Bezug
Komplexe Extremwertaufgabe: Frage und Hilfe
Status: (Antwort) fertig Status 
Datum: 13:33 So 18.09.2005
Autor: Zwerglein

Hi, Lara,

könnte es sein, dass da was fehlt?
Wenn die Aufgabe so gestellt ist, nehme ich einfach das gleichschenklig- rechtwinklige Dreieck, bei dem die beiden Katheten gleich r sind und die Hypothenuse [mm] \wurzel{2}*r. [/mm] Ein größeres wird kaum reingehen!

Ist es nicht vielleicht so, dass das Dreieck bei P (oder Q?) rechtwinklig sein soll?

Also: Ich nehm' mal an, P liegt auf dem waagrechten Radius des Viertelkreises, Q auf dem Kreisbogen und das Dreieck soll bei P rechtwinklig sein!
Dann nenne ich die waagrechte Kathete des Dreiecks a, die senkrechte b.
Der Zusammenhang von a und b mit dem gesuchten Winkel [mm] \phi [/mm] ist dann:
a = [mm] r*cos(\phi), [/mm] b = [mm] r*sin(\phi) [/mm]  (mit 0 < [mm] \phi [/mm] < [mm] \bruch{\pi}{2} [/mm] bzw. 0° < [mm] \phi [/mm] < 90°, wenn Du in Grad rechnen möchtest!)

Die Fläche des Dreiecks F ist zunächst 0,5*a*b ,

mit obiger Nebenbedingung hast Du dann:
[mm] F(\phi) [/mm] = [mm] 0,5*r^{2}*cos(\phi)*sin(\phi) [/mm]

Naja, und nun: ableiten, Ableitung =0 setzen, etc.

Gilt alles natürlich nur, wenn meine Vermutung (siehe oben!) stimmt!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]