matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Analysis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Komplexe Analysis
Komplexe Analysis < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Analysis: Dirichletsche Probleme
Status: (Frage) überfällig Status 
Datum: 14:45 Di 08.06.2010
Autor: soljenitsin

hallo leute
ich habe hier eine aufgabe mit der ich nicht klar kommen kann.das schlimmer daran ist ich brauch einpaar volle punkte um prüfung teilnehmen zu dürfen(bei Analysis III)

aufgabe ist so

Mit H sei die offene obere Halbebene
[mm] \{(x,y)\in \IR^{2}|y > 0 \} [/mm] bezeichnet.
Dann ist [mm] \partialH [/mm] der Rand von [mm] H:\partialH [/mm] = [mm] \{(x,y)\in \IR^{2}|y = 0 \} [/mm] und [mm] \overline{H}der [/mm] Abschluss von H:
[mm] \overline{H}=\{(x,y)\in \IR^{2}|y \ge 0 \} [/mm]
Weiter sei eine Funktion [mm] \emptyset:\partialH \to \IR [/mm] gegeben,die beschränkt ist

a)Zeigen Sie, dass die Funktion h : H → C mit

[mm] h(x,y)=\bruch{1}{\pi} \integral_{-\infty}^{\infty} \bruch{y}{|t-(x+iy)|^{2}} \emptyset(t)dt [/mm]
harmonisch in H ist

b)Für die Funktion [mm] \emptyset [/mm] setze man nun

[mm] \emptyset(t)= [/mm] 1 für t [mm] \in [/mm] außerhalb 0,1 (also umgekehrte []) und 0 für t [mm] \not\in [/mm] außerhalb 0,1 (also umgekehrte [])

Berechnen sie h(x,y)

c)Ermitteln Sie den Grenzwert [mm] \limes_{y\rightarrow\ 0}h(t,y)in [/mm] Abhängigkeit von t [mm] \in \IR.An [/mm] welchen stellen t [mm] \in \IR [/mm] trifft die gleichung [mm] \limes_{y\rightarrow\ 0}h(t,y)=\emptyset [/mm] (t) zu?


PS.scheiss aufgabe oder?:)

        
Bezug
Komplexe Analysis: Kommentar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:03 Di 08.06.2010
Autor: statler

Hi,

Sch...aufgabe wäre vielleicht noch OK, oder meinetwegen auch 'Ich stehe gerade in der braunen Masse' oder so ähnlich, aber explizit hinschreiben tun wir das nicht!

Gruß aus dem feinen Hamburg
Dieter

Bezug
        
Bezug
Komplexe Analysis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Do 10.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]