matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisKomplexe Ableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionalanalysis" - Komplexe Ableitung
Komplexe Ableitung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Ableitung: Tipp
Status: (Frage) beantwortet Status 
Datum: 08:44 So 24.05.2015
Autor: JigoroKano

Hallo liebe Community 😃,

Ich möchte gerne die Ableitungen von [mm] f_{1}(z)=(2i)^{z} [/mm] und [mm] f_{2}(z)=z^{1+i} [/mm] berechnen. Leider habe ich gar keine Idee, wie ich da rangehen soll.... Vllt könnt ihr mir ein bisschen helfen :)?

Beste Grüße :)

        
Bezug
Komplexe Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 So 24.05.2015
Autor: M.Rex

Hallo.

In den komplexen Zahlen [mm] \IC [/mm] gilt doch - ähnlich wie im rellen:

[mm] f'(z)=\lim\limits_{h\to0}\frac{f(z+h)-f(z)}{h} [/mm]

Es gelten also weiterhin die aus den reellen Zahlen bekannten Regeln der Ableitung, also Summenregel, Faktorregel, Kettenregel, Produktregel und Quotientenregel.

Leite die beiden Funktionen also mal nach den aus [mm] \IR [/mm] bekannten Regeln ab.

[mm] f_{2}(z)=z^{1+i} [/mm] sollte damit eigentlich problemlos ableitbar sein, das ist da die Form [mm] f(x)=x^{n}, [/mm] dessen Ableitung du sicher bilden kannst.

Und auch [mm] f_{1}(x)=(2i)^{z} [/mm] ist eine Exponentialfunktion der Form [mm] f(x)=a^{x}, [/mm] die Ableitung solltest du aus [mm] \IR [/mm] noch kennen.

Probier mal, wie weit du kommst, dann sehen wir weiter.

Marius

Bezug
        
Bezug
Komplexe Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:38 Di 26.05.2015
Autor: fred97

Die allgemeine Potenz [mm] a^b [/mm] mit a,b [mm] \in \IC [/mm] ist nicht eindeutig:

Es ist [mm] a^b=e^{a*log(b)} [/mm] und der komplexe Logarithmus ist nicht eindeutig.

Beispiel:

   [mm] (2i)^z= e^{z*log(2i)}, [/mm]

wobei die Logarithmen von 2i gegeben sind durch

  [mm] $log(2)+i*\bruch{\pi}{2}+2 [/mm] k [mm] \pi [/mm] i$  für k [mm] \in \IZ. [/mm]

Für jedes k [mm] \in \IZ [/mm] bekommen wir also ein "Funktion" [mm] (2i)^z. [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]