matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKomplexadjungierte Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Komplexadjungierte Matrizen
Komplexadjungierte Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexadjungierte Matrizen: Beweis einer Gleichung
Status: (Frage) beantwortet Status 
Datum: 23:37 Do 27.10.2005
Autor: Neo_Cortex

# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hi, knabbere zur Zeit an folgendem Beweis
Komme bei [mm] \overline{\lambda} [/mm] und [mm] \overline{\mu} [/mm] nicht weiter, weiss nicht wie ich dies anders ausdrücken kann.

1.)  Weise nach das für komplexe Matrizen A, B gleichen Typs und für komplexe Zahlen  [mm] \lambda, \mu [/mm]

stets ( [mm] \lambda [/mm] A + [mm] \mu [/mm] B)* =  [mm] \overline{\lambda}(A [/mm] *) + [mm] \overline{\mu}(B [/mm] *) und (A *)* = A gelten !

Also ich weiss nicht wie ich den Beweis am besten führen soll, worauf man achten muss und ob es Möglichkeiten der Abkürzung gibt,
ausserdem soll das oben Stehende ja nicht im Beweis benutzt werden, sondern als Folgerung des Beweises ersichtlich werden soll

Habe versucht den Matrizen A und B Indizes zuzuweisen z.B.  [mm] a_{j,k} [/mm] und [mm] b_{l,m}, [/mm] aber bin an den adjungierten [mm] (-1)^{j+k} [/mm] * det( [mm] a_{j,k} [/mm] )
gescheitert.

mein "Lösungsansatz" ist :

A= [mm] \summe_{h=1}^{j} \summe_{i=1}^{k} a_{j,k} [/mm]
B= [mm] \summe_{h=1}^{l} \summe_{i=1}^{m} b_{l,m} [/mm]

[mm] \lambda [/mm] * A = [mm] \lambda [/mm] * [mm] \summe_{h=1}^{j} \summe_{i=1}^{k} a_{j,k} [/mm]
[mm] \mu [/mm] * B = [mm] \mu [/mm] * [mm] \summe_{h=1}^{l} \summe_{i=1}^{m} b_{l,m} [/mm]

Hoffe auf verständliche Antwort (da ich als Ersti weniger als Laie bin)
danke schön



        
Bezug
Komplexadjungierte Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:59 Fr 28.10.2005
Autor: Stefan

Hallo!

Ich nehme an, dass es sich hier um die adjungierte Matrix

[mm] $A^{\star}:=\overline{A}^T$ [/mm]

handelt, und nicht etwa um die Adjunkte, wie es deine Formel nahelegt.

Dann funktionieren die Beweise in der Art, dass man beide Matrizen komponentenweise vergleicht.

Ich mache es mal für das Beispiel [mm] $(\lambda [/mm] A + [mm] \mu B)^{\star} [/mm] = [mm] \overline{\lambda} A^{\star} [/mm] + [mm] \overline{\mu} B^{\star}$ [/mm] vor:

[mm] $(\lambda [/mm] A + [mm] \mu B)^{\star}_{i,j}$ [/mm]

$= [mm] \overline{\lambda a_{ji} + \mu b_{ji}}$ [/mm]

$= [mm] \overline{\lambda} \cdot \overline{a_{ji}} [/mm] + [mm] \overline{\mu} \cdot \overline{b_{ji}} [/mm] = [mm] \overline{\lambda} A^{\star}_{ij} [/mm] + [mm] \overline{\mu} B^{\star}_{ij}$. [/mm]

Die anderen Beweise funktionieren ähnlich einfach...

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]