matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplex differenzierbar?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Komplex differenzierbar?
Komplex differenzierbar? < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplex differenzierbar?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Fr 10.11.2006
Autor: papillon

Aufgabe
Gegeben sei die Funktion [mm] f(z)=z^{n}. [/mm]

1. Zeigen Sie, dass f komplex differenzierbar ist.

2. Zeigen Sie, dass für die Ableitung gilt:  [mm] \bruch{\partial}{\partial z}z^{n}=n\*z^{n-1} [/mm]

Hallo!

1. Mein Ansatz wäre, dass ich zeige:

[mm] \bruch{\partial}{\partial \overline{z}}z^{n}=\bruch{1}{2}( \bruch{\partial}{\partial x}+i \bruch{\partial}{\partial y})(x+iy)^{n}=0 [/mm] ,

denn so habe ich es auch für f(z)=z beweisen können. Allerdings stoße ich nun auf das n im Exponenten und weiß nicht, wie ich dieses behandeln soll. Was meint ihr?

2. Nach der Definition gilt für die komplexe Ableitung :

[mm] f'(z)=\limes_{z\rightarrow\ z_{0}}\bruch{z^{n}-z_{0}^{n}}{z-z_{0}} [/mm]

Aber das hilft mir wirklich nicht weiter. Es soll aber "per defintion" lösbar sein. Wer weiß mehr?


Vielen Dank!

        
Bezug
Komplex differenzierbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Fr 10.11.2006
Autor: felixf

Hallo!

> Gegeben sei die Funktion [mm]f(z)=z^{n}.[/mm]
>  
> 1. Zeigen Sie, dass f komplex differenzierbar ist.
>  
> 2. Zeigen Sie, dass für die Ableitung gilt:  
> [mm]\bruch{\partial}{\partial z}z^{n}=n\*z^{n-1}[/mm]
>  Hallo!
>  
> 1. Mein Ansatz wäre, dass ich zeige:
>
> [mm]\bruch{\partial}{\partial \overline{z}}z^{n}=\bruch{1}{2}( \bruch{\partial}{\partial x}+i \bruch{\partial}{\partial y})(x+iy)^{n}=0[/mm]
> ,
>  
> denn so habe ich es auch für f(z)=z beweisen können.
> Allerdings stoße ich nun auf das n im Exponenten und weiß
> nicht, wie ich dieses behandeln soll. Was meint ihr?

Mach es doch genauso wie in 2.: Per Definition ist $f$ in [mm] $z_0$ [/mm] doch genau dann komplex diffbar, wenn der Differenzenquotient konvergiert.

> 2. Nach der Definition gilt für die komplexe Ableitung :
>  
> [mm]f'(z)=\limes_{z\rightarrow\ z_{0}}\bruch{z^{n}-z_{0}^{n}}{z-z_{0}}[/mm]
>  
> Aber das hilft mir wirklich nicht weiter. Es soll aber "per
> defintion" lösbar sein. Wer weiß mehr?

Es ist doch $(x - y) [mm] \sum_{k=0}^{n-1} x^k y^{n-k} [/mm] = [mm] x^n [/mm] - [mm] y^n$ [/mm] fuer beliebige komplexe Zahlen $x, y [mm] \in \IC$. [/mm] Insofern ist [mm] $\frac{z^n - z_0^n}{z - z_0} [/mm] = [mm] \sum_{k=0}^{n-1} z^k z_0^{n-k}$. [/mm] Kommst du damit weiter?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]