matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenKomplanare vektoren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - Komplanare vektoren
Komplanare vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplanare vektoren: wann sind vektoren komplanar?
Status: (Frage) beantwortet Status 
Datum: 20:59 Fr 24.09.2010
Autor: mupp

Aufgabe
Untersuchen Sie, ob die Vektoren (2 1 -3) (1 2 4) und (5 4 1) komplanar sind.

Hallo,
ich bin gearde echt am verzweifeln,
ich habe immer noch nicht verstanden, wie ich herausbekomme, ob drei vektoren komplanar sind. ich hatte weder matrizenrechnung sonst noch etwas. ich weiß, dass ich drei gleichungen aufstellen muss anch der formel: r*vektor a + s*vektor b + t*vektor c = 0
I 2r+s+5t=0
II r+2s+4t=0
III -3r+4s+t=0

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich weiß dass ich jetzt nach r s t auflösen muss, aber ich weiß leider nicht wie und woher ich dann weiß, ob sie dann komplanar sind oder nicht?
Danke


        
Bezug
Komplanare vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 Fr 24.09.2010
Autor: angela.h.b.

Hallo,

komplanar sind sie, wenn r=s=t=0 nicht die einzige Lösung des Gleichungssystems ist, sondern es eine von dieser "Nullösung" verschiedene Lösung gibt.

Gruß v. Angela




Bezug
                
Bezug
Komplanare vektoren: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:28 Fr 24.09.2010
Autor: mupp

hallo,

erstmal danke für die schnelle antwort.
das,was Sie geschrieben haben, habe ich schon verstanden.
aber ich bekomme wenn ich nach r s t auflöse ganz komische brüche heraus, die dann nicht 0 ergeben. ich weiß schon, was die bedingungen sind, damit die vektoren komplanar sind, aber ich kann es rechnerisch nicht beweisen.
danke und liebe grüße

Bezug
                        
Bezug
Komplanare vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:36 Fr 24.09.2010
Autor: angela.h.b.

Hallo,

zeig uns mal, was Du rechnest. Brüche sind ja nichts Schlimmes.

Gruß v. Angela



Bezug
                                
Bezug
Komplanare vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:01 Fr 24.09.2010
Autor: mupp

ok ich werde versuchen, das mal verständlich zu erklären: =)
als erstes schreibe ich mir die vektoren raus ( ich weiß leider nicht wie man die untereinanderschreibt :S)
vektor a (2 1 -3), vektor b (1 2 4), vektor c (5 4 1 )

und dann geht ja die formel :
r*vektor a + s*vektor b + t* vektor c = 0

und dann stell ich drei gleichungen dazu auf:
I 2r + s + 5t = 0
II r + 2s + 4t = 0
III -3r + 4s + t = 0

dann versuch ich nach r, s oder t aufzulösen.
ich habe jetzt die erste gleichung genommen und dann nach s aufgelöst:

2r + s + 5t = 0
s = -2r - 5t

dann würde ich das in die zweite gleichung einsetzen und nach r auflösen :

r + 2 (-2r-5t) + 4t = 0
r -4r -10t + 4t = 0
-3r - 6t = 0
-3r = 6t
r = -2t

und das setze ich in die dritte gleichung ein und löse t auf :

-3 (-2t) + 4 (-2r) + t = 0
6t - 8r + t = 0
7t -8r = 0
7t = 8r
t = 8/7 r

ich hab das gefühl ich dreh mich total im kreis, so bekomm ich doch nichts für r s t raus ? :S
ich bin total verwirrt...



Bezug
                                        
Bezug
Komplanare vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Fr 24.09.2010
Autor: angela.h.b.


> ok ich werde versuchen, das mal verständlich zu erklären:
> =)
> als erstes schreibe ich mir die vektoren raus ( ich weiß
> leider nicht wie man die untereinanderschreibt :S)
> vektor a (2 1 -3), vektor b (1 2 4), vektor c (5 4 1 )
>
> und dann geht ja die formel :
> r*vektor a + s*vektor b + t* vektor c = 0
>  
> und dann stell ich drei gleichungen dazu auf:
> I 2r + s + 5t = 0
>  II r + 2s + 4t = 0
>  III -3r + 4s + t = 0
>  
> dann versuch ich nach r, s oder t aufzulösen.
>  ich habe jetzt die erste gleichung genommen und dann nach
> s aufgelöst:
>
> 2r + s + 5t = 0
> s = -2r - 5t
>
> dann würde ich das in die zweite gleichung einsetzen und
> nach r auflösen :
>
> r + 2 (-2r-5t) + 4t = 0
> r -4r -10t + 4t = 0
> -3r - 6t = 0
> -3r = 6t
> r = -2t
>
> und das setze ich in die dritte gleichung ein und löse t
> auf :
>
> -3 (-2t) + 4 (-2r) + t = 0

Hallo,

aber Du setzt hier das errechnete r ja für r und für s ein!
Das ist falsch.

Gruß v. Angela


>  6t - 8r + t = 0
> 7t -8r = 0
>  7t = 8r
> t = 8/7 r
>
> ich hab das gefühl ich dreh mich total im kreis, so bekomm
> ich doch nichts für r s t raus ? :S
>  ich bin total verwirrt...
>  
>  


Bezug
                                                
Bezug
Komplanare vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:22 Fr 24.09.2010
Autor: mupp

oh das stimmt dann löse ich jetzt nochmal nach t auf :
-3(-2t)  + 4 (-2r - 5t) + t = 0

6t - 8r -20t + t = 0
-13t - 8r = 0
-13t = 8r
t = - 8/ 13 r

un dann setze ich das nochmal in die zweite gleichung ein und löse nach r auf:

-2t + 2 (-2r-5t) + 4 (-8/13r)= 0
-2t -4r -10t + 32/13r = 0
-12t - 20/13 r  = 0

20/13 r = 12t
r = 7,8 t

irgendwie ist das komisch...das kann doch nicht der richtige weg sein ich komme hier zu keinem ergebnis für r s oder t

Bezug
                                                        
Bezug
Komplanare vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 05:15 Sa 25.09.2010
Autor: angela.h.b.

Hallo,

Du mußt beim Lösen systematisch vorgehen, damit Du Dich nicht im Kreise drehst.

Löse die erste Gleichung nach r auf und setze dieses r in die zweite ud dritte Gleichung ein.
Du hast nun zwei Gleichungen II' und III' in den Variablen s und t.

Löse II' nach s auf, setze in die III' ein und löse nach t auf.

Dieses t setze dann beim freigestellten s ein, und danach s und t beim freigestellten r.

Mach mal!

Falls bei Euch der Gaußalgorithmus in tabellarischer Form besprochen wurde, solltest Du Dich auch damit beschäftigen und das lernen.

Je nachdem, was Du schon gelernt hast, kannst Du die lineare Abhängigkeit dreier Vektoren des [mm] \IR^3 [/mm] auch mit der Determinante testen: ist die det der zugehörigen Matrix [mm] \not=0, [/mm] so sind die Vektoren linear unabhängig, liegen also nicht in einer Ebene. Ist die det =0, so sind sie komplanar.

Gruß v. Angela









Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]