matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenKomplanare Vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Vektoren" - Komplanare Vektoren
Komplanare Vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplanare Vektoren: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:11 Di 19.02.2008
Autor: confused

Aufgabe
Zeigen Sie, dass die gegebenen Vektoren komplanar sind.

[mm] \pmat{ 1 & 1 & 2 \\ 7 & 2 & -1 \\ 2 & 1 & 1 } [/mm]

so, damit sie komplanar sind, müsste ja die Bedingung [mm] r\vec{a} [/mm] + [mm] s\vec{b} [/mm] + [mm] t\vec{c} [/mm] = 0 gelten.
zuerst stelle ich das gleichungssystem auf;

r +s+ 2t =0
7r+2s-t=0
2r+s+t=0

aus der lösung weiß ich dasfür s = 3 und t = -1 gilt, kann ich nachvollziehen, aber ich weiß nicht wie ich das rechnerisch rauskriege.
beim auflösen fällt da bei mir irgendwie immer nur alles weg.... ich bin verzweifelt :(

danke für jede hilfe :)

        
Bezug
Komplanare Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Di 19.02.2008
Autor: Adamantin


>I    r +s+ 2t =0
>II  7r+2s-t=0
>III  2r+s+t=0


I+2*II [mm]\Rightarrow 15r+5s=0[/mm] IV
II+III [mm]\Rightarrow 9r+3s=0[/mm]V

Leider habe ich jetzt falsch editiert und meine erste Rechnung ist weg, jedenfalls war meine Antwort richtig! Ich war nur zu dumm, den selben Schluss wie angelah daraus zu ziehen. Natürlich hatte ich auch 0=0, was richtig ist, nur bedeutet das eben nicht, dass r=s=t=0 sind!


Bezug
                
Bezug
Komplanare Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 Di 19.02.2008
Autor: confused

ja genau das war bei mir auch ständig so

aber wenn du dir die lösung anguckst

1           1          2
7 = 3*   2    -    -1
2           1         1

dann is das ja schon richtig
man muss doch auch irgendwie rechnerisch da drauf kommen.... ich versteh das nciht

Bezug
                        
Bezug
Komplanare Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Di 19.02.2008
Autor: angela.h.b.

Hallo,

so geht's:

>I    r +s+ 2t =0
>II  7r+2s-t=0
>III  2r+s+t=0

I'                 r +s+ 2t =0
II'=-7*I+II      -5s-15t =0
III'=-2*I+III          -s-3t=0

I''                 r +s+ 2t =0
II''= [mm] -\bruch{1}{5}II' [/mm]     s+3t =0
III'''=II'-5III'             0  =0


Nun weiß man:  s=-3t  und r=-s-2t=3t-2t=t.

Eine Lösung des Systems ist also: (wähle) t=1, dann ist s=-3 und r=1,

und somit läßt sich der dritte Vektor als Linearkombi der beiden ersten schreiben. Also liegen die drei in einer Ebene.

Gruß v. Angela





Bezug
                
Bezug
Komplanare Vektoren: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 19:10 Di 19.02.2008
Autor: XPatrickX


>  
> >I    r +s+ 2t =0
>  >II  7r+2s-t=0
>  >III  2r+s+t=0
>  
>
> I+2*II [mm]\Rightarrow 15r+5s=0[/mm] IV
>  I-2*III [mm]\Rightarrow -3r-s=0[/mm] V
>  

Hey,

bei einem Gleichungssystem sollte man weiterhin alle drei Gleichung hinschreiben.
So wie du hier gerechnet hast, hast du zwei Mal die erste Gleichung geändert, indem ein vielfaches einer anderen Zeile hinzuaddiert hast. Somit hast du bei deinem Gleichungssystem dann natürlich zwei identische Gleichungen und es ergibt sich keine eindeutige Lösung mehr.


> Eleminierung von s
>  
> IV+5*V [mm]\Rightarrow 0=0[/mm] hm...ups...ich würde sagen, die
> Rechnung bei uns beiden stimmt, die angegebenen Lösungen
> sind falsch ^^
>  Und mein Taschenrechner streikt bei der Lösung...der sagt
> Mathemathisches Problem...ist die Angabe falsch?
>  
> Mehrmals nachgeprüft, dieses LSG hat keine eindeutige
> Lösung, sprich für die angegebenen Zahlen sind die Vektoren
> linear unabhängig...wenn man tatsächlich lineare
> Abhängigkeit zeigen soll, kann da was nicht stimmen

Gruß Patrick

Bezug
                        
Bezug
Komplanare Vektoren: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 19:29 Di 19.02.2008
Autor: Adamantin

Meine Rechnung war richtig, ich habe die erste Gleichung nicht angetastet, sondern II und III verändert. Wie man bei angelah sieht, ist die Lösung ja so zu finden

Bezug
        
Bezug
Komplanare Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:22 Di 19.02.2008
Autor: Tyskie84

Hallo!

Ich hab noch ein Tipp: Du kannst auch alternativ die determinante der Vektoren ausrechnen und es muss 0 herauskommen. also [mm] det(\vec{a},\vec{b},\vec{c})=0 [/mm] vielleicht geht das schneller :-)

[cap] Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]