matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesKompaktheit?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Kompaktheit?
Kompaktheit? < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompaktheit?: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 21:29 Mo 24.03.2008
Autor: Docy

Hallo alle zusammen,
ich wollte fragen, ob es abgeschlossene und beschränkte Mengen gibt, die nicht kompakt sind? Wenn ja, kann mir da jemand vielleicht ein Beispiel nennen?
Danke im Vorraus

Gruß Docy

        
Bezug
Kompaktheit?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Mo 24.03.2008
Autor: felixf

Hallo Docy,

>  ich wollte fragen, ob es abgeschlossene und beschränkte
> Mengen gibt, die nicht kompakt sind? Wenn ja, kann mir da
> jemand vielleicht ein Beispiel nennen?

nimm dir irgendeinen unendlichdimensionalen normierten Vektorraum $(V, [mm] \| \bullet \|)$ [/mm] mit der Normtopologie. Dann ist die abgeschlossene Einheitskugel $B := [mm] \{ v \in V \mid \| v \| \le 1 \}$ [/mm] abgeschlossen, beschraenkt, aber nicht kompakt.

LG Felix


Bezug
                
Bezug
Kompaktheit?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Mo 24.03.2008
Autor: Docy

Hallo nochmal,
was ist denn eine Normtopologie???

Gruß Docy

Bezug
                        
Bezug
Kompaktheit?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 Mo 24.03.2008
Autor: Marcel

Hallo,

> Hallo nochmal,
>  was ist denn eine Normtopologie???

gemeint ist damit folgendes:
Auf jedem metrischen Raum $(X,d)$ kann man in natürlicher Weise eine Topologie angeben (also einen topologischen Raum $(X,T)$ machen, wobei $T$ Topologie). Man sagt zu dieser Topologie dann, sie sei von der Metrik induziert:

[mm] $T=\left\{O \subset X: O \mbox{ ist offen }(\mbox{bzgl. }d)\right\}$ [/mm]

ist eben die Topologie der offenen Mengen. Hierbei würde man besser [mm] $T=T_d$ [/mm] schreiben, denn eine Menge $O [mm] \subset [/mm] X$ heißt genau dann offen (bzgl. der Metrik $d$), wenn gilt:

Für jedes $o [mm] \in [/mm] O$ existiert ein [mm] $\varepsilon=\varepsilon(o) [/mm] > 0$, so dass [mm] $U_\varepsilon (o):=\left\{y \in X: d(y,o) < \varepsilon\right\} \subset [/mm] O$ gilt.

Damit ist dann [mm] $(X,T_d)$ [/mm] ein topologischer Raum.

Nun gilt zudem:

Ist $(V,||.||)$ ein normierter Raum, so induziert $||.||$ in natürlicher Weise eine Metrik auf $V$. Mit der Definition

[mm] $(\*)$ $d_{||.||}: [/mm] V [mm] \times [/mm] V [mm] \to [0,\infty)$, $d_{||.||}(x,y):=||x-y||$ [/mm] ($x,y [mm] \in [/mm] V$)

ist nämlich [mm] $(V,d_{||.||})$ [/mm] ein metrischer Raum.

Mit anderen Worten:
Sei $(V,||.||)$ ein normierter Raum. Dann gilt:

Die Norm $||.||$ induziert eine Metrik [mm] $d_{||.||}$ [/mm] auf $V$, vgl. [mm] $(\*)$. [/mm] Diese Metrik [mm] $d_{||.||}$ [/mm] induziert dann wieder in natürlicher Weise eine Topologie auf $V$, nämlich [mm] $T_{d_{||.||}}$. [/mm] Und diese Topologie [mm] $T_{d_{||.||}}$ [/mm] ist gemeint, mit anderen Worten:

[mm] T_{d_{||.||}}=\{O \subset V: O \mbox{ ist offen bzgl. } d_{||.||}\} [/mm]

wobei eine Teilmenge $O [mm] \subset [/mm] V$ dann genau dann offen bzgl. [mm] $d_{||.||}$ [/mm] ist, wenn gilt:

Für jedes $o [mm] \in [/mm] O$ existiert ein [mm] $\varepsilon=\varepsilon(o) [/mm] > 0$, so dass [mm] $U_{\varepsilon} (o)=\{v \in V: ||v-o||<\varepsilon\} \subset [/mm] O$ gilt.

Also, in diesem Sinne:
Betrachte den durch die Norm induzierten topologischen Raum [mm] $(V,T_{d_{||.||}})$ [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]