matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKompaktheit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Kompaktheit
Kompaktheit < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompaktheit: kurze frage
Status: (Frage) beantwortet Status 
Datum: 02:23 Mo 03.12.2007
Autor: jaruleking

Aufgabe
[mm] K=[0,1]\cap\IQ [/mm] ist nicht Kompakt, da [mm] \bruch \wurzel{2}{2}, [/mm] die 2 soll unter die wurzel, habe es nicht hinbekommen, der Bruch ein Häufungspunkt ist und nicht in K liegt.

So habe jetzt mal ne frage zur späten stunde. die schreibeweise oben, ist die zahl dann eine rationale zahl, weil man sie als bruch darstellen kann und rationale zahlen liegen ja nicht in meiner menge, deshalb ist der häufungspunkt auserhalb von k. ist das so richtig? oder wie kann man das erklären?

danke schon mal

gruß

        
Bezug
Kompaktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 03:14 Mo 03.12.2007
Autor: MatthiasKr

Hi,
> [mm]K=[0,1]\cap\IQ[/mm] ist nicht Kompakt, da [mm]\bruch {\wurzel{2}){2},[/mm]
> die 2 soll unter die wurzel, habe es nicht hinbekommen, der
> Bruch ein Häufungspunkt ist und nicht in K liegt.
>  So habe jetzt mal ne frage zur späten stunde. die
> schreibeweise oben, ist die zahl dann eine rationale zahl,
> weil man sie als bruch darstellen kann und rationale zahlen
> liegen ja nicht in meiner menge, deshalb ist der
> häufungspunkt auserhalb von k. ist das so richtig? oder wie
> kann man das erklären?
>  
> danke schon mal
>  
> gruß

also: deine menge sind alle rationalen zahlen im einheitsintervall. die zahl [mm] $\frac{\sqrt{2}}{2}$ [/mm] (die meinst du doch oder?) ist irrational, also nicht in der menge. Allerdings sind alle irrationalen zahlen HPe der rationalen zahlen, da diese in den reellen zahlen DICHT liegen. also auch [mm] $\frac{\sqrt{2}}{2}$. [/mm]
je nachdem, wie ihr kompaktheit definiert habt, kann man dann folgern, dass deine menge nicht kompakt ist, ja. (sie ist nicht abgeschlossen)

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]