matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKompaktheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Kompaktheit
Kompaktheit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompaktheit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:14 Mi 21.06.2006
Autor: christine85

Aufgabe
a) Sei K kompakt und f: K [mm] \to [/mm] Y eine stetige Bijektion zwischen metrischen Räumen. Beweise, dass dann auch die Umkehrabbildung [mm] f^{-1}: [/mm] Y [mm] \to [/mm] K stetig ist.
b) Zeige, dass die Funktion f:[0,2 [mm] \pi) \to \IR^{2}, [/mm] g(t)=(cost,sint), ein Beispiel für eine bijektive, stetige Funktion von einem metrischen Raum Y in einen kompakten metrischen Raum K liefert, deren Umkehrabbildung nicht stetig ist. In Teil a) können K und Y also nicht ohne weiteres vertauscht werden.

guten abend..

also ich versuche gerade, diese Aufgabe zu lösen. Doch ich habe fürchterliche Probleme. Kann mir hierbei vielleicht einer helfen?
danke

        
Bezug
Kompaktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:47 Do 22.06.2006
Autor: goeba

Hi,

zu a) kriege ich keinen Beweis hin, tut mir leid. Die Aussage scheint irgendwie klar zu sein. Ideen: Stetige Bilder kompakter Mengen sind kompakt, also ist Y auch schon mal kompakt.
Wenn jetzt   [mm] f^{-1} [/mm] nicht stetig wäre, bekäme man das vielleicht irgendwie zum Widerspruch mit der Kompaktheit von K.

b) ist nicht so schwer. Das Bild der Funktion ist ein Kreis, dieser ist kompakt in R2. Das Urbild jeder Umbebung des Bildes von 0 enthält Elemente aus dem linken und aus dem rechten Rand des Definitionsbereiches. Damit ist f nicht stetig. Male Dir das mal auf und probiere die Details selbst!

Viele Grüße,

Andreas

Bezug
        
Bezug
Kompaktheit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Fr 23.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]