matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenKompakte metrische Räume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Kompakte metrische Räume
Kompakte metrische Räume < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompakte metrische Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Do 26.05.2011
Autor: Spooky_123

Aufgabe
Es seien (X, d) ein metrischer Raum und K ⊂ X kompakt. Zeigen Sie, dass es zu jedem a [mm] \in [/mm] X zwei Elemente [mm] kmin\in [/mm] K , [mm] kmax\in [/mm] K gibt, sodass d(kmin , a) = inf {d(k, a) [mm] k\in [/mm] K} und d(kmax , a) = sup{d(k, a) [mm] k\in [/mm] K }.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo.
Ich denke dass es bei dieser Aufgabe um den minimalsten/maximalsten Abstand einer Menge zu einem Punkt in der Obermenge (hier X) geht. Stimmt das?
Aber wie soll ich dies beweisen?(Ich vermute dass ich einige Eigenschaften kompakter Mengen benutzen muss.)
Könnt ihr mir helfen?
Spooky

        
Bezug
Kompakte metrische Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 09:23 Fr 27.05.2011
Autor: fred97


> Es seien (X, d) ein metrischer Raum und K ⊂ X kompakt.
> Zeigen Sie, dass es zu jedem a [mm]\in[/mm] X zwei Elemente [mm]kmin\in[/mm]
> K , [mm]kmax\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

K gibt, sodass d(kmin , a) = inf {d(k, a) [mm]k\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> K} und d(kmax , a) = sup{d(k, a) [mm]k\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

K }.

>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Hallo.
>  Ich denke dass es bei dieser Aufgabe um den
> minimalsten/maximalsten


Man lernt nicht aus !  minimal, minimaler, noch kleiner und gannz, ganz am minimalsten !


>  Abstand einer Menge zu einem Punkt
> in der Obermenge (hier X) geht. Stimmt das?
>  Aber wie soll ich dies beweisen?


> (Ich vermute dass ich
> einige Eigenschaften kompakter Mengen benutzen muss.)


Wie kommst Du auf diese überaus abwegige Idee ???


>  Könnt ihr mir helfen?

Wir setzen: $S:= sup ~ \{d(x,a): x \in K\}$. Dann gibt es eine Folge (x_n) in K mit

                    $S= \limes_{n\rightarrow\infty}d(x_n,a)$

K ist kompakt, also enthält (x_n) eine konvergente Teilfolge, deren Limes zu K gehört.

So, nun überlege Dir, was dieser Limes leistet.

FRED

>  Spooky


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]