matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenKommutierende Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Kommutierende Matrix
Kommutierende Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kommutierende Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Di 22.01.2008
Autor: hundert

Aufgabe
Sei A eine Matrix im K-vektorraum V:= M(n,K)
(a) Zeigen sie, dass die durch [mm] \psi [/mm] : V -> V , X-> X*A-A*X definierte abbildung linear   ist.

b) sei nun  [mm] K=\IC [/mm] , n=2 und A:= [mm] \pmat{ i+1 & 2 \\ 2 & 1 } [/mm]
Geben sie eine Basis für ker [mm] (\psi) [/mm] an

So also zu a) muss ich ja zeigen dass die abbildung linear ist,  also f(x+y) = f(x)+f(y)  und a* f(x)= f(ax)           aber wie soll ich das jetzt  auf meine abbildung psi anwenden= und für was steht eigentlich das X?

zu b) da ist ja nicht nach dem kern von der matrix A, sondrn nach dem Kern von psi gefragt oder? aber worin leigt der unterscheid. muss ich hier auch G.El anwenden, aber auf  die 2 kreuz 2 matrix und darsu  die einheisvektoren machen?

vielen dank  schonmal für eure hilfe.

diees frage habe ich in keinem anderen forum gestellt.

lg


        
Bezug
Kommutierende Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Di 22.01.2008
Autor: Gnometech

Grüße!

>  So also zu a) muss ich ja zeigen dass die abbildung linear
> ist,  also f(x+y) = f(x)+f(y)  und a* f(x)= f(ax)          
> aber wie soll ich das jetzt  auf meine abbildung psi
> anwenden= und für was steht eigentlich das X?

Die Abbildung [mm] $\psi$ [/mm] bildet den Raum der $n [mm] \times [/mm] n$-Matrizen in sich ab. Und eine Matrix $X$ wird auf das genannte Produkt geschickt, es gilt also:

[mm] $\psi(X) [/mm] = X [mm] \cdot [/mm] A - A [mm] \cdot [/mm] X$.

Gezeigt werden soll also für Matrizen $X$ und $Y$ aus $V$ und Skalare [mm] $\lambda \in [/mm] K$ dass gilt [mm] $\psi(X [/mm] + Y) = [mm] \psi(X) [/mm] + [mm] \psi(Y)$ [/mm] und [mm] $\psi(\lambda [/mm] X) = [mm] \lambda \psi(X)$. [/mm]
  

> zu b) da ist ja nicht nach dem kern von der matrix A,
> sondrn nach dem Kern von psi gefragt oder? aber worin leigt
> der unterscheid. muss ich hier auch G.El anwenden, aber auf
>  die 2 kreuz 2 matrix und darsu  die einheisvektoren
> machen?

Der Kern ist in diesem Fall die Menge aller $2 [mm] \times [/mm] 2$ Matrizen $X$ mit Einträgen in [mm] $\IC$ [/mm] für die gilt [mm] $\psi(X) [/mm] = X [mm] \cdot [/mm] A - A [mm] \cdot [/mm] X = 0$. Stell am besten eine Gleichung einer Matrix mit unbekannten Einträgen (z.B. $X = [mm] \begin{pmatrix} a & b \\ c & d \end{pmatrix}$) [/mm] auf und ermittle Bedingungen an diese Einträge, die dafür sorgen, dass oben genanntes Produkt gleich 0 ist.

Alles klar? Viel Erfolg!

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]