matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraKommutative Monoide
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Kommutative Monoide
Kommutative Monoide < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kommutative Monoide: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:01 Mi 11.06.2014
Autor: UniversellesObjekt

Hallo,

ich bin durch eine Spielerei zu folgender Fragestellung gekommen:

Es sei $C $ eine Kategorie mit endlichen Koprodukten (insbesondere also einem initialen Objekt). Dann bilden die Isomorphieklassen von Objekten aus $ C $ ein additives kommutatives Monoid, wobei die Summe zweier Objekte durch deren Koprodukt gegeben ist.

Frage: Kann man (bis auf Isomorphie) jedes kommutative Monoid auf diese Weise erhalten? Falls nein, wie kann man Monoide mit dieser Eigenschaft klassifizieren?

Falls jemand Zeit und Lust hat, darüber nachzugrübeln (oder es völlig trivial ist), würde ich mich über Anmerkungen jeder Art freuen.

Liebe Grüße,
UniversellesObjekt

Edit: Mir ist mittlerweile klar, dass es außer dem initialen Objekt keine invertierbaren Elemente existieren dürfen. Genügt das bereits?

        
Bezug
Kommutative Monoide: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:40 Mi 11.06.2014
Autor: UniversellesObjekt

Was mir gerade nicht einmal klar ist: Kann ich so nichttriviale abelsche Gruppen erhalten? Das heißt, kann in einer Kategorie [mm] $a\sqcup [/mm] b=0$ gelten mit $ [mm] a\not\cong [/mm] 0$?

Liebe Grüße,
UniversellesObjekt

Bezug
                
Bezug
Kommutative Monoide: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:27 So 15.06.2014
Autor: Berieux

Hallo.

Nein das geht nicht. Denn es gilt für [mm]a\sqcup b=0[/mm]: [mm]Hom(0, -)=Hom(a\sqcup b, -)=Hom(a, - )\times Hom(b, -)[/mm].
Und daraus folgt [mm]a\cong b \cong 0[/mm].

Bezug
                        
Bezug
Kommutative Monoide: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 So 15.06.2014
Autor: UniversellesObjekt

Hi Berieux, das habe ich auch bemerkt und es ist im Anfangspost bereits editiert. Hättest du Ideen zu der allgemeinen Fragestellung?

Liebe Grüße,
UniversellesObjekt

Bezug
        
Bezug
Kommutative Monoide: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:33 So 15.06.2014
Autor: Berieux

Bei math stackexchange wird gerade diskutiert inwieweit das möglich ist für Monoide für die nur das neutrale Element invertierbar ist. Siehe []hier  

Bezug
                
Bezug
Kommutative Monoide: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:38 So 15.06.2014
Autor: UniversellesObjekt

Oh, gut zu wissen! Ich hatte mich bereits mit Martin Brandenburg unterhalten, war mir aber nicht bewusst, dass er jetzt auf math.se nachgefragt hat. Nachdem mir die Frage gekommen war, habe ich nämlich gesehen, dass er eine ähnliche Frage auf math.se gestellt hatte: []Halbringe und symmetrische monoidale Kategorien mit endlichen Koprodukten

Liebe Grüße,
UniversellesObjekt

Bezug
        
Bezug
Kommutative Monoide: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Do 19.06.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]