matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikKombinatorisches Problem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Kombinatorik" - Kombinatorisches Problem
Kombinatorisches Problem < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorisches Problem: Erklärung, warum gerade so?
Status: (Frage) beantwortet Status 
Datum: 20:22 Sa 21.02.2009
Autor: cash

Aufgabe
Ein Ausschuss besteht aus 4 Frauen und 4 Männern, dessen Sitzungen an einem rechteckigen Tisch stattfinden, der an seinen beiden Längsseiten jeweils 4 Personen Platz bietet.
a) Auf wie viele Arten können die Ausschussmitglieder Platz nehmen, wenn die 4 Frauen auf einer Seite des Tisches sitzen sollen und die Personen unterschieden werden?
b) Auf wie viele verschiedene Arten können die Ausschussmitglieder Platz nehmen, wenn auf jeder Längsseite des Tisches Frauen und Männer abwechselnd sitzen sollen und die Personen unterschieden werden?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
zu a) Ich hatte überlegt, dass es: (4! + 4!)*2=96 sein müsste, da auf jeder Längsseite die Möglichkeit zur Verteilung der Männer bzw. Frauen 4! ist und das ganze dann *2, da man die Tischseiten ja tauschen kann. Nach der Lösung ist es aber: 4!*4!/2=1152. Wieso muss man die Verteilungen der Männer und Frauen multiplizieren?
zu b) Ähnliches Problem: ich habe überlegt es müsste: (4! *2)+(4! *2)=96. Nach der Lösung ist es aber: 4! *2 *4! *2= 2304.
Auch hier wieder, warum muss man multiplizieren statt addieren?
Bin dankbar für jede helfende Erklärung!

        
Bezug
Kombinatorisches Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Sa 21.02.2009
Autor: abakus


> Ein Ausschuss besteht aus 4 Frauen und 4 Männern, dessen
> Sitzungen an einem rechteckigen Tisch stattfinden, der an
> seinen beiden Längsseiten jeweils 4 Personen Platz bietet.
>  a) Auf wie viele Arten können die Ausschussmitglieder
> Platz nehmen, wenn die 4 Frauen auf einer Seite des Tisches
> sitzen sollen und die Personen unterschieden werden?
>  b) Auf wie viele verschiedene Arten können die
> Ausschussmitglieder Platz nehmen, wenn auf jeder Längsseite
> des Tisches Frauen und Männer abwechselnd sitzen sollen und
> die Personen unterschieden werden?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
> zu a) Ich hatte überlegt, dass es: (4! + 4!)*2=96 sein
> müsste, da auf jeder Längsseite die Möglichkeit zur

Nein,
zu JEDER der 4! Möglichkeiten auf der einen Seite gibt es 4! Möglichkeiten auf der anderen, also nicht
4! + 4!, sondern 4! * 4! rechnen.
Gruß Abakus



> Verteilung der Männer bzw. Frauen 4! ist und das ganze dann
> *2, da man die Tischseiten ja tauschen kann. Nach der
> Lösung ist es aber: 4!*4!/2=1152. Wieso muss man die
> Verteilungen der Männer und Frauen multiplizieren?
>  zu b) Ähnliches Problem: ich habe überlegt es müsste: (4!
> *2)+(4! *2)=96. Nach der Lösung ist es aber: 4! *2 *4! *2=
> 2304.
>  Auch hier wieder, warum muss man multiplizieren statt
> addieren?
>  Bin dankbar für jede helfende Erklärung!  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]