matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikKombinatorik bei Binärelemente
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Kombinatorik" - Kombinatorik bei Binärelemente
Kombinatorik bei Binärelemente < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik bei Binärelemente: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:29 Sa 05.12.2009
Autor: Schwendrik

Aufgabe
Für dieses Beispiel gilt: n = 3, m = 2
Erstellen Sie einen Auswahlvektor [mm] y_l [/mm] für den gilt:
[mm]$y_l$ \begin{align} y_{l} \in \left\{0,1\right\}^{n} , \sum_{l} y_{l} = \begin{bmatrix} 1 \\ \vdots \\ 1 \\ \end{bmatrix} , 1 \le l \le q, q \le m \end{align}[/mm]
Bilde Sie nun alle Teilmengen [mm] Y_t [/mm] der Menge
[mm]$Y$ \begin{align} Y = \left\{ y_{l} ; 1 \leq l \leq 2^{n} \right\} \end{align}[/mm]
so, dass die Summe aller Vektoren jeder Teilmenge [mm] $Y_{t} [/mm] = [mm] \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$ [/mm] ergibt.
Dabei ist zu beachten, daß jede Teilmenge [mm] Y_t [/mm] höchstens $m$ Elemente besitzen darf.

Folgenden Weg bin ich gegangen:
Ich habe den Y Vektor aufgebaut:
[mm] $Y-vektor$ \begin{align}\label{YVektor} Y &= \left\{y_{1}, \cdots , y_{8}\right\}; \\ \nonumber y_{1} &= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} , y_{2} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} , y_{3} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} , y_{4} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} ,\\ \nonumber y_{5} &= \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} , y_{6} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} , y_{7} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} , y_{8} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \end{align} [/mm]
Dann habe ich die Teilmengen [mm] Y_t [/mm] mit m = 2 Elementen erstellt:
[mm] $Teilmengen$ \begin{align}\label{YTeilmenge} Y_{1} = \left\{ y_{1}, y_{8} \right\}\\ Y_{2} = \left\{ y_{2}, y_{7} \right\}\\ Y_{3} = \left\{ y_{3}, y_{6} \right\}\\ Y_{4} = \left\{ y_{4}, y_{5} \right\} \end{align} [/mm]
Nun meine Frage:
gibt es eine Formel oder Herleitung mit der ich:
a) die Anzahl Teilmengen berechnen
b) die Elemente generieren kann


Wenn m = 2 ist, erscheint mir die Lösung zu a) einfach: [mm] $\frac{2^n}{2}$ [/mm]
Erweitere ich m auf 3, dann gibt es in diesem Fall eine Kombination mehr $ [mm] Y_{5} [/mm] = [mm] \left\{ y_{2}, y_{3} , y_{5} \right\}$ [/mm]
Betrachte den Fall mit n = 4 und m = 2 ergeben sich wieder der einfache Lösungsweg mit [mm] $\frac{2^n}{2}$. [/mm] Und den 'spiegelbildlichen' Elementen: 1,16 ... 8,9.
Erweitere ich in diesem Fall m auf 3 erhalte ich durch raussuchen 6 zusätzliche Tripels.

Mir will nicht der rechte Ansatz gelingen hoffe aber, bei Euch jemanden zu finden, der gerade nicht den berühmten Balken vor der Stirn hat.

Zu b) fällt mir nur die Möglichkeit ein alle Elemente miteinander zu kombinieren die den Wert [mm] $2^n-1$ [/mm] ergeben.

Ich habe diese Frage in keinem Forum oder auf anderen Internetseiten gestellt.

        
Bezug
Kombinatorik bei Binärelemente: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 So 13.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]