matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikKombinatorik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Kombinatorik" - Kombinatorik
Kombinatorik < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Schwarzer Peter / Grundlagen
Status: (Frage) beantwortet Status 
Datum: 20:19 Mi 07.09.2005
Autor: Alphatierchen

Habe folgende Aufgabe: Ein Kartenspiel mit 15 Karten darunter ein Unikat und je 7 Pärchen. Es werden 5 Karten gezogen.
Gesucht sind die Wahrscheinlichkeiten für:
- Unikat unter den 5 Karten
- 2 Paare und Unikat
- genau zwei Unikate

Zur ersten Aufgabe dachte ich, da würde Ziehen ohne zurücklegen mit Berücksichtigung der Reihenfolge gelten, also 15!/(15-5)! * 5 = 1.39E-05, aber scheint für mich zu wenig zu sein... Wo ist mein Denkfehler???
Und für die Paar-Löung hab ich keinen Ansatz. Kam schon damals im Mathe-LK damit nicht klar :-(
Kann mir wer bitte helfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kombinatorik: Nachfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Do 08.09.2005
Autor: Julius

Hallo Alphatierchen!

Deine Frage verwirrt mich. Kann es sein, dass du das Wort "Unikat" in zwei verschiedenen Versionen benutzt? Denn sonst wäre die Antwort auf die letzte Frage ja $0$, weil es nur ein Unikat (den "Schwarzen Peter" eben) gibt. Kann es sein, dass du dort stattdessen "2 Einzelkarten" meinst?

Könntest du in Hinblick darauf deine Frage noch einmal eindeutig  formulieren? Danke! :-)

Viele Grüße
Julius

Bezug
                
Bezug
Kombinatorik: Verbesserung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:27 Do 08.09.2005
Autor: Alphatierchen

bei der dritten Teilaufgabe muss es natürlich heißen "genau zwei Paare". Alles andere macht natürlich keinen Sinn

Bezug
        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Do 08.09.2005
Autor: danielinteractive

Hallo,

1) A.."Unikat unter den 5 Karten"
Günstig sind also die Möglichkeiten, bei denen das Unikat dabei ist (1 aus 1=1). Die 4 restlichen Karten sind egal, hier ziehen wir 4 aus den restlichen 14. Gesamtanzahl der Möglichkeiten (ohne Beachtung der Reihenfolge) ist 5 aus 15. Deshalb...
[mm] P(A) = \bruch{\vektor{1\\1}*\vektor{14\\4}}{\vektor{15\\5}}= \bruch{1}{3}[/mm]
2) B.."2 Paare und Unikat unter den 5 Karten"
Wieder soll das Unikat dabei sein. Diesmal sind die 4 anderen nicht egal, es sollen 2 Paare sein. Es gibt 7 insgesamt, also gibt es hier 2 aus 7 Möglichkeiten.
[mm] P(B) = \bruch{\vektor{1\\1}*\vektor{7\\2}}{\vektor{15\\5}} \approx 7*10^{-3}[/mm]
3) C.."genau 2 Paare"
Eigentlich wie B, nur dass nicht das Unikat verlangt ist, also wir aus den 11 übrigen Karten eine beliebig wählen können. Deshalb wieder ("günstig durch gesamt"):
[mm] P(C) = \bruch{\vektor{11\\1}*\vektor{7\\2}}{\vektor{15\\5}}\approx 0,077 [/mm]

mfg
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]