matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikKombination ohne Wiederholung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Kombination ohne Wiederholung
Kombination ohne Wiederholung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombination ohne Wiederholung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Mi 10.12.2008
Autor: mrs.x

Aufgabe
In der Tagesproduktion einer Firma ist ein bestimmter Massenartikel N mal produziert worden.Von diesen N produzierten Artikeln seien R defekt.Zur Kontrolle werden zufällig n Artikel aus der Tagesproduktion entnommen.
Wie groß ist die Wahrscheinlichkeit für das Ereignis
[mm] A_k [/mm] :"es treten genau k defekte Artikel in dieser Stichprobe auf"
für 0 [mm] \le [/mm] k [mm] \le [/mm] n und k [mm] \le [/mm] R?

Halli Hallo,

Ich dachte mir folgendes:Es gibt [mm] \vektor{N \\ n} [/mm] Möglichkeiten insgesamt und [mm] \vektor{R \\ n} [/mm] Möglichkeiten von R defekten n defekten zu ziehen und genauso für die [mm] \vektor{N-R \\ n} [/mm] "heilen".Die Wsk von n ,n defekte zu ziehen ist [mm] also:\vektor{R \\ n}/\vektor{N \\ n} [/mm] , für k=n oder? aber für k< n komm ich irgendwie im Moment nicht weiter.vielleicht : [mm] \vektor{R \\ k}/\vektor{N \\ n}? [/mm]

VG


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kombination ohne Wiederholung: Antwort
Status: (Antwort) fertig Status 
Datum: 05:23 Do 11.12.2008
Autor: Fulla

Hallo mrs.x,


> Ich dachte mir folgendes:Es gibt [mm]\vektor{N \\ n}[/mm]
> Möglichkeiten insgesamt

jawoll.

> und [mm]\vektor{R \\ n}[/mm] Möglichkeiten
> von R defekten n defekten zu ziehen

bei der Aufgabe sollen aber nur $k$ defekte Teile unter den $n$ gezogenen sein -> [mm] ${R\choose k}$ [/mm]

> und genauso für die
> [mm]\vektor{N-R \\ n}[/mm] "heilen".

wenn $k$ Teile der Stichprobe defekt sind, bleiben $n-k$ "heile" übrig -> [mm] ${N-R\choose n-k}$ [/mm]

> Die Wsk von n ,n defekte zu
> ziehen ist [mm]also:\vektor{R \\ n}/\vektor{N \\ n}[/mm] , für k=n
> oder?
> aber für k< n komm ich irgendwie im Moment nicht
> weiter.vielleicht : [mm]\vektor{R \\ k}/\vektor{N \\ n}?[/mm]

ach, ich merk grad, dass du mit dem Fall $k=n$ angefangen hast... Dann stimmt deine Formel. Allgemein würde ich es mir so überlegen:

Die Stichprobe (der Größe n) besteht aus k defekten und n-k heilen Teilen.
Für die Defekten gibt es [mm] ${R\choose k}$ [/mm] und für die Heilen [mm] ${N-R\choose n-k}$ [/mm] Möglichkeiten.
Die Wahrscheinlichkeit für das Ereignis [mm] $A_k$ [/mm] ist dann
[mm] $W(A_k)=\dfrac{{R\choose k}{N-R\choose n-k}}{{N\choose n}}$ [/mm]

(Wenn du da n=k einsetzt, kommst du auf die Formel, die du dir schon überlegt hast)

Lieben Gruß,
Fulla

Bezug
                
Bezug
Kombination ohne Wiederholung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:03 Fr 12.12.2008
Autor: mrs.x

Hallo Fulla,

Vielen Dank für die Hilfe!Ich habe es jetzt verstanden.

LG & schönes Wochenende!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]