matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesKollision von zwei Graden im R
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Kollision von zwei Graden im R
Kollision von zwei Graden im R < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kollision von zwei Graden im R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Do 23.04.2009
Autor: chill420

Hallo,
hoffe ich bin hier richtig! Ich habe ein problem, ich möchte eine Kollisionserkennung für zwei linien/Graden im Raum haben.
Ich hatte irgendwo mal gelesen, das es die möglichkeit gibt zu ermitteln ob eine Linie "links" oder "recht" von der anderen liegt...
Kann mir bei der Sache irgendjemand helfen??

Vielen Dank im Voraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kollision von zwei Graden im R: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:42 Do 23.04.2009
Autor: angela.h.b.


> Hallo,
>  hoffe ich bin hier richtig! Ich habe ein problem, ich
> möchte eine Kollisionserkennung für zwei linien/Graden im
> Raum haben.
>  Ich hatte irgendwo mal gelesen, das es die möglichkeit
> gibt zu ermitteln ob eine Linie "links" oder "recht" von
> der anderen liegt...
>  Kann mir bei der Sache irgendjemand helfen??

Hallo,

[willkommenmr].

Vielleicht erzählst Du mal etwas genauer, worum es geht und was Du mit rechts und links meinst.

Gruß v. Angela

Bezug
        
Bezug
Kollision von zwei Graden im R: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Do 23.04.2009
Autor: felixf

Hallo!

>  hoffe ich bin hier richtig! Ich habe ein problem, ich
> möchte eine Kollisionserkennung für zwei linien/Graden im
> Raum haben.
>  Ich hatte irgendwo mal gelesen, das es die möglichkeit
> gibt zu ermitteln ob eine Linie "links" oder "recht" von
> der anderen liegt...

Wenn die parallel liegen, kann man das einfach machen. (Dazu brauchst du das Skalarprodukt.)

>  Kann mir bei der Sache irgendjemand helfen??

Fangen wir mal mit dem Schnittpunkt an.

Du hast zwei Geraden, sagen wir mal parametrisiert gegeben durch [mm] $g_1(t) [/mm] = [mm] \vec{a} [/mm] + t [mm] \vec{b}$ [/mm] und [mm] $g_2(s) [/mm] = [mm] \vec{c} [/mm] + s [mm] \vec{d}$ [/mm] mit $s, t [mm] \in \IR$, [/mm] und [mm] $\vec{b}, \vcec{d}$ [/mm] nicht den Nullvektoren.

Um einen Schnittpunkt zu bestimmen setzt du sie gleich:

[mm] $g_1(t) [/mm] = [mm] g_2(s)$ [/mm]

Dann ergibt sich:

$s [mm] (-\vec{d}) [/mm] + t [mm] \vec{b} [/mm] = [mm] \vec{c} [/mm] - [mm] \vec{a}$ [/mm]

Dies ist ein lineares Gleichungssystem mit zwei Unbestimmten ($s$, $t$), also kannst du es schreiben als

[mm] $\pmat{ -\vec{d}_x & \vec{b}_x \\ -\vec{d}_y & \vec{b}_y } \vektor{ s \\ t } [/mm] = [mm] \vektor{ \vec{c}_x - \vec{a}_x \\ \vec{c}_y - \vec{a}_y }$. [/mm]

Die vordere Matrix bezeichnen wir mal mit $A$ :)

Jetzt hast du zwei Faelle:

a) $A$ ist invertierbar, in dem Fall sind die Geraden nicht parallel und es gibt genau einen Schnittpunkt. $A$ ist genau dann invertierbar, wenn [mm] $\det [/mm] A = [mm] -\vec{d}_x \vec{b}_y [/mm] + [mm] \vec{b}_x \vec{d}_y \neq [/mm] 0$ ist. In dem Fall ist [mm] $A^{-1} [/mm] = [mm] \frac{1}{-\vec{d}_x \vec{b}_y + \vec{b}_x \vec{d}_y} \pmat{ \vec{b}_y & -\vec{b}_x \\ \vec{d}_y & -\vec{d}_x }$ [/mm] und [mm] $\vektor{s \\ t} [/mm] = [mm] A^{-1} \vektor{ \vec{c}_x - \vec{a}_x \\ \vec{c}_y - \vec{a}_y }$. [/mm]

Daraus erhaelst du $s$ und $t$, die du wiederum in [mm] $g_1(t)$ [/mm] und [mm] $g_2(s)$ [/mm] einsetzen kannst um den Schnittpunkt zu bekommen.

b) $A$ ist nicht invertierbar, in dem Fall sind die Geraden gleihc oder parallel. (Sie sind genau dann gleich, wenn das LGS eine Loesung -- und damit unendlich viele Loesungen hat. Wenn es keine Loesung gibt, sind sie parallel). Sie ist genau dann nicht invertierbar, wenn [mm] $\det [/mm] A = [mm] -\vec{d}_x \vec{b}_y [/mm] + [mm] \vec{b}_x \vec{d}_y [/mm] = 0$ ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]