matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenKofaktor-Berechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Determinanten" - Kofaktor-Berechnung
Kofaktor-Berechnung < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kofaktor-Berechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:13 Do 19.05.2011
Autor: paula_88

Aufgabe
A= [mm] \pmat{ 3 & 2 & -2 & 3 \\ -2 & -2 & 2 & -1 \\ 2 & -3 & -3 & 1 \\ -1 & -3 & 2 & -2 } [/mm]

Aufgabe:
Berechnung des Kofaktors [mm] A_{14} [/mm] an der Position (1,4).

Hallo ihr alle,
Wiedermal eine nicht sehr schwierige Aufgabe, bei welcher ich jedoch nicht weiß, wie sie genau berechnet wird.
An der Position (1,4) ist ja die -1.
Ich weiß dass man eine Untermatrix bilden muss, indem man eine Zeile und eine Spalte streicht und dass es was mit Determinantenberechnung zutun hat.
Leider habe ich durch das Internet nichts genaueres rausfinden können.
Könnte mir jemand die Schritte kurz erklären?
Vielen Dank :-)

        
Bezug
Kofaktor-Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:26 Do 19.05.2011
Autor: MathePower

Hallo paula_88,

> A= [mm]\pmat{ 3 & 2 & -2 & 3 \\ -2 & -2 & 2 & -1 \\ 2 & -3 & -3 & 1 \\ -1 & -3 & 2 & -2 }[/mm]
>  
> Aufgabe:
>  Berechnung des Kofaktors [mm]A_{14}[/mm] an der Position (1,4).
>  Hallo ihr alle,
>  Wiedermal eine nicht sehr schwierige Aufgabe, bei welcher
> ich jedoch nicht weiß, wie sie genau berechnet wird.
>  An der Position (1,4) ist ja die -1.
>  Ich weiß dass man eine Untermatrix bilden muss, indem man
> eine Zeile und eine Spalte streicht und dass es was mit
> Determinantenberechnung zutun hat.
>  Leider habe ich durch das Internet nichts genaueres
> rausfinden können.


Schau mal hier: []Minor


>  Könnte mir jemand die Schritte kurz erklären?
>  Vielen Dank :-)


Gruss
MathePower

Bezug
                
Bezug
Kofaktor-Berechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Do 19.05.2011
Autor: paula_88

Ok, durch Wikipedia habe ich das nun wie folgt verstanden:

A=$ [mm] \pmat{ 3 & 2 & -2 & 3 \\ -2 & -2 & 2 & -1 \\ 2 & -3 & -3 & 1 \\ -1 & -3 & 2 & -2 } [/mm] $

Da ich den Kofaktor der Position (1,4) errechnen soll, streiche ich die 1. Zeile und 4. Spalte:

[mm] A_{neu}$ \pmat{ -2 & -2 & 2 \\ 2 & -3 & -3 \\ -1 & -3 & 2 & } [/mm] $.

Habe ich das jetzt richtig verstanden, dass der Kofaktor [mm] A_{14} [/mm] sich aus der Determinante der "neuen" Matrix mal [mm] (-1)^{1+4} [/mm] berechnet?

Dann bekäme ich folgendes raus: det [mm] A_{neu} [/mm] * [mm] (-1)^{5} [/mm] = 14 * [mm] (-1)^{5} [/mm] = -14.

Was sagt ihr dazu? :-)

Bezug
                        
Bezug
Kofaktor-Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Do 19.05.2011
Autor: MathePower

Hallo paula_88,

> Ok, durch Wikipedia habe ich das nun wie folgt verstanden:
>  
> A=[mm] \pmat{ 3 & 2 & -2 & 3 \\ -2 & -2 & 2 & -1 \\ 2 & -3 & -3 & 1 \\ -1 & -3 & 2 & -2 }[/mm]
>  
> Da ich den Kofaktor der Position (1,4) errechnen soll,
> streiche ich die 1. Zeile und 4. Spalte:
>  
> [mm]A_{neu}[/mm] [mm]\pmat{ -2 & -2 & 2 \\ 2 & -3 & -3 \\ -1 & -3 & 2 & } [/mm].
>  
> Habe ich das jetzt richtig verstanden, dass der Kofaktor
> [mm]A_{14}[/mm] sich aus der Determinante der "neuen" Matrix mal
> [mm](-1)^{1+4}[/mm] berechnet?


Ja, das hast Du richtig verstanden.


>  
> Dann bekäme ich folgendes raus: det [mm]A_{neu}[/mm] * [mm](-1)^{5}[/mm] =
> 14 * [mm](-1)^{5}[/mm] = -14.


[ok]


>  
> Was sagt ihr dazu? :-)


Gruss
MathePower

Bezug
                                
Bezug
Kofaktor-Berechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:06 Do 19.05.2011
Autor: paula_88

Sehr schön, vielen Dank :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]