matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKörpertheorie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Körpertheorie
Körpertheorie < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körpertheorie: Konstruierbarkeit
Status: (Frage) beantwortet Status 
Datum: 13:30 Mi 06.04.2005
Autor: lucky_A.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:

[mm] M={0,1,z}\subset\IC [/mm] , [mm] z\in\IR^{+} [/mm]
Jetzt ist die Frage: warum läßt sich  [mm] \wurzel[5]{z} [/mm] nicht immer aus M konstruieren?

Ich habe mir folgendes dazu überlegt:
Die Nullstelle von [mm] x^{5}-z [/mm] ist ja  [mm] \wurzel[5]{z}. [/mm]
Weiterhin gibt es so einen Satz, der besagt:
z ist konstruierbar genau dann wenn es eine Körpererweiterung         [mm] \IQ(M \cup \overline{M})= K_{0} \subseteq....... \subseteq K_{n} [/mm] gibt mit  [ [mm] K_{l+1}: K_{l}]=2 [/mm] und z [mm] \in K_{n}. [/mm]

Wenn sich nun dieses Polynom  [mm] x^{5}-z [/mm] nicht zerlegen läßt, dann ist          [ [mm] \IQ[\wurzel[5]{z}]: \IQ]=5 [/mm] eine Primzahl, dh diese Körpererweiterung hat keine Zwischenkörper und somit folgt aus dem Satz von oben, dass  [mm] \wurzel[5]{z} [/mm] sich nicht konstruieren läßt.
Wenn aber z jetzt so gewählt wird, dass das Polynom sich zerlegen läßt, und man Zwischenräume finden kann, so dass die Bed. aus dem Satz erfüllt ist, dass man dann  [mm] \wurzel[5]{z} [/mm] konstruieren kann.

Ist es so richtig?


        
Bezug
Körpertheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Sa 09.04.2005
Autor: Stefan

Hallo!

Nachdem ich mir die wichtigsten Sätze dazu noch einmal angeschaut habe, würde ich sagen, dass du damit absolut richtig liegst. [applaus]

Meine Einschätzung ist aber mit Vorsicht zu genießen, da ich kein Algebraiker bin (und wir auch leider fast keine im Forum haben derzeit). Aber ich dachte es ist gut, es gibt dir überhaupt mal jemand eine Rückmeldung. Immerhin habe ich zu dem Thema mal ein Skript geschrieben [peinlich], allerdings vor neun Jahren...

Also, ich denke es ist alles richtig so.

Hast du denn ein Beispiel für ein $z$, das sich nicht konstruieren lässt?

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]