Körpererweiterung, Morphismus < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:44 Mi 08.02.2012 | Autor: | flipflop |
Aufgabe | Bemerkung: Es sei [mm] \varphi: [/mm] X [mm] \to [/mm] Y ein dominanter Morphismus irreduzibler affiner Varietäten gleicher Dimension. Dann hat man [mm] \IK(Y) \cong \varphi^{\ast}(\IK(Y)) \subseteq \IK(X). [/mm] Die Körpererweiterung [mm] \varphi^{\ast}(\IK(Y)) \subseteq \IK(X) [/mm] ist dabei endlich erzeugt und algebraisch.
[mm] (\varphi^{\ast} [/mm] bezeichnet den zugehörigen Komorphismus [mm] \varphi^{\ast}: \IK(Y) \to \IK(X) [/mm] ) |
Hallo,
leider komme ich mit der obigen Bemerkung nicht zurecht - ich schreibe jetzt mal auf, was mir so dazu einfällt:
zu algebraisch:
Es gilt [mm] trdeg_{\IK}(\varphi^{\ast}(\IK(Y))=trdeg_{\IK}(\IK(Y))=trdeg_{\IK}(\IK(X)). [/mm] Wir haben einen Körperturm [mm] \IK \subseteq \varphi^{\ast}(\IK(Y)) \subseteq \IK(X). [/mm] Deshalb gilt [mm] trdeg_{\IK}(\IK(X))=trdeg_{\IK}(\varphi^{\ast}(\IK(Y))+trdeg_{\varphi^{\ast}(\IK(Y)}(\IK(X)). [/mm] Also folgt [mm] trdeg_{\varphi^{\ast}(\IK(Y)}(\IK(X)) [/mm] =0 und somit ist [mm] \varphi^{\ast}(\IK(Y)) \subseteq \IK(X) [/mm] algebraisch.
Stimmt das so?
zu endlich erzeugt:
hier habe ich leider überhaupt keinen Ansatz. Das einzige, was mir noch einfällt, ist, dass [mm] \varphi^{\ast} [/mm] injektiv ist, weil [mm] \varphi [/mm] dominant ist...
Es wäre prima, wenn mir jemand weiterhelfen könnte - vielen Dank schonmal...
lg flipflop
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:42 Sa 11.02.2012 | Autor: | felixf |
Moin flipflop!
> Bemerkung: Es sei [mm]\varphi:[/mm] X [mm]\to[/mm] Y ein dominanter
> Morphismus irreduzibler affiner Varietäten gleicher
> Dimension. Dann hat man [mm]\IK(Y) \cong \varphi^{\ast}(\IK(Y)) \subseteq \IK(X).[/mm]
> Die Körpererweiterung [mm]\varphi^{\ast}(\IK(Y)) \subseteq \IK(X)[/mm]
> ist dabei endlich erzeugt und algebraisch.
>
> [mm](\varphi^{\ast}[/mm] bezeichnet den zugehörigen Komorphismus
> [mm]\varphi^{\ast}: \IK(Y) \to \IK(X)[/mm] )
>
> Hallo,
> leider komme ich mit der obigen Bemerkung nicht zurecht -
> ich schreibe jetzt mal auf, was mir so dazu einfällt:
>
> zu algebraisch:
> Es gilt
> [mm]trdeg_{\IK}(\varphi^{\ast}(\IK(Y))=trdeg_{\IK}(\IK(Y))=trdeg_{\IK}(\IK(X)).[/mm]
> Wir haben einen Körperturm [mm]\IK \subseteq \varphi^{\ast}(\IK(Y)) \subseteq \IK(X).[/mm]
> Deshalb gilt
> [mm]trdeg_{\IK}(\IK(X))=trdeg_{\IK}(\varphi^{\ast}(\IK(Y))+trdeg_{\varphi^{\ast}(\IK(Y)}(\IK(X)).[/mm]
> Also folgt [mm]trdeg_{\varphi^{\ast}(\IK(Y)}(\IK(X))[/mm] =0 und
> somit ist [mm]\varphi^{\ast}(\IK(Y)) \subseteq \IK(X)[/mm]
> algebraisch.
> Stimmt das so?
Ja.
> zu endlich erzeugt:
> hier habe ich leider überhaupt keinen Ansatz. Das
> einzige, was mir noch einfällt, ist, dass [mm]\varphi^{\ast}[/mm]
> injektiv ist, weil [mm]\varphi[/mm] dominant ist...
Das stimmt nicht. Wenn es [mm] $\varphi^\ast$ [/mm] gibt, ist es automatisch injektiv als Homomorphismus zwischen Koerpern.
Du brauchst dominant, damit es [mm] $\varphi^\ast [/mm] : [mm] \IK(Y) \to \IK(X)$ [/mm] ueberhaupt gibt.
Wenn es nicht dominant ist, bekommst du nur einen Homomorphismus zwischen den Strukturgarben bzw. den Koordinatenringen.
Dass [mm] $\IK(X)$ [/mm] endlich erzeugt ueber [mm] $\varphi^*(\IK(Y))$ [/mm] ist folgt daraus, dass [mm] $\IK(X)$ [/mm] ueber [mm] $\IK$ [/mm] endlich erzeugt ist (als Koerper!) und somit auch ueber [mm] $\varphi^*(\IK(Y))$.
[/mm]
Um das nachzuvollziehen musst du dir die Definition von [mm] $\IK(X)$ [/mm] genauer anschauen.
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:15 Di 14.02.2012 | Autor: | flipflop |
Hallo Felix,
vielen Dank für deine Antwort! (Ich melde mich erst jetzt, weil ich krank war :-( )
zu algebraisch: Leider ist mir meine eigene Lösung gerade nicht mehr klar - warum gilt denn [mm] \IK \subseteq \varphi^{\ast}(\IK(Y))?
[/mm]
zu endlich erzeugt: Danke für die Korrektur und den Tipp! Mein Versuch:
[mm] \IK(X) [/mm] ist der Quotientenkörper von [mm] \mathcal{O}_X(X). [/mm]
[mm] \mathcal{O}_X(X) [/mm] ist eine affine [mm] \IK [/mm] -Algebra, d.h. [mm] \mathcal{O}_X(X)=\IK[f_1, \dots f_r] [/mm] mit [mm] f_i \in \mathcal{O}_X(X). [/mm] Also ist [mm] \IK(X) [/mm] = [mm] \IK (\bruch{f_1}{1}, \dots, \bruch{f_r}{1}) [/mm] und somit auch [mm] \IK(X) [/mm] = [mm] \varphi ^{\ast}(\IK(Y)) (\bruch{f_1}{1}, \dots, \bruch{f_r}{1}).
[/mm]
Lg flipflop
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:25 Do 16.02.2012 | Autor: | Berieux |
Hi!
> Hallo Felix,
> vielen Dank für deine Antwort! (Ich melde mich erst
> jetzt, weil ich krank war :-( )
>
> zu algebraisch: Leider ist mir meine eigene Lösung gerade
> nicht mehr klar - warum gilt denn [mm]\IK \subseteq \varphi^{\ast}(\IK(Y))?[/mm]
>
[mm]\varphi^{\ast}[/mm] auf K eingeschränkt ist doch die Identität.
Und da die Varietäten dieselbe Dimension haben, ist [mm]tredeg_{K}K(Y)=trdeg_{K}K(X)[/mm]. Deshalb ist deine Argumentation so wie sie im ersten Post steht richtig.
> zu endlich erzeugt: Danke für die Korrektur und den Tipp!
> Mein Versuch:
> [mm]\IK(X)[/mm] ist der Quotientenkörper von [mm]\mathcal{O}_X(X).[/mm]
> [mm]\mathcal{O}_X(X)[/mm] ist eine affine [mm]\IK[/mm] -Algebra, d.h.
> [mm]\mathcal{O}_X(X)=\IK[f_1, \dots f_r][/mm] mit [mm]f_i \in \mathcal{O}_X(X).[/mm]
> Also ist [mm]\IK(X)[/mm] = [mm]\IK (\bruch{f_1}{1}, \dots, \bruch{f_r}{1})[/mm]
> und somit auch [mm]\IK(X)[/mm] = [mm]\varphi ^{\ast}(\IK(Y)) (\bruch{f_1}{1}, \dots, \bruch{f_r}{1}).[/mm]
>
Ja.
Viele Grüße,
Berieux
> Lg flipflop
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:56 Do 16.02.2012 | Autor: | flipflop |
Hallo Berieux,
vielen Dank!
Liebe Grüße, flipflop
|
|
|
|