matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperKörpererweiterung 2
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Körpererweiterung 2
Körpererweiterung 2 < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körpererweiterung 2: Verständisproblem
Status: (Frage) beantwortet Status 
Datum: 16:10 Di 16.12.2008
Autor: Docy

Aufgabe
Warum ist [mm] \IQ(\wurzel[3]{2})\not=\{a+b\wurzel[3]{2}: a,b \in\IQ\}? [/mm]

Hallo alle zusammen,
als Begründung finde ich: "Die Menge [mm] \{a+b\wurzel[3]{2}: a,b \in\IQ\} [/mm] ist kein Körper, da sie zwar [mm] \wurzel[3]{2} [/mm] enthält, aber nicht das Produkt [mm] \wurzel[3]{2}*\wurzel[3]{2}=\wurzel[3]{4}." [/mm]
Das verstehe ich z. B. nicht, weil man doch einfach a=0, b=1 setzen kann und man hat dann doch [mm] (0+1*\wurzel[3]{2})*(0+1*\wurzel[3]{2})=(\wurzel[3]{2})^2 [/mm] oder liege ich da falsch?????

Gruß Docy

        
Bezug
Körpererweiterung 2: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Di 16.12.2008
Autor: statler

Guten Abend!

> Warum ist [mm]\IQ(\wurzel[3]{2})\not=\{a+b\wurzel[3]{2}: a,b \in\IQ\}?[/mm]

>  als Begründung finde ich: "Die Menge [mm]\{a+b\wurzel[3]{2}: a,b \in\IQ\}[/mm]
> ist kein Körper, da sie zwar [mm]\wurzel[3]{2}[/mm] enthält, aber
> nicht das Produkt
> [mm]\wurzel[3]{2}*\wurzel[3]{2}=\wurzel[3]{4}."[/mm]
>  Das verstehe ich z. B. nicht, weil man doch einfach a=0,
> b=1 setzen kann und man hat dann doch
> [mm](0+1*\wurzel[3]{2})*(0+1*\wurzel[3]{2})=(\wurzel[3]{2})^2[/mm]
> oder liege ich da falsch?????

Völlig! Du kannst doch in der Menge nicht einfach herummultiplizieren.

Gruß
Dieter

>  
> Gruß Docy


Bezug
                
Bezug
Körpererweiterung 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:51 Di 16.12.2008
Autor: Docy

Ja richtig, Denkfehler! Ich denke jetzt, dass man [mm] \wurzel[3]{4} [/mm] nicht als [mm] a+b*\wurzel[3]{2} [/mm] schreiben kann, denn sonst müsste [mm] b=\wurzel[3]{2} [/mm]   sein, was ja nicht geht.

Gruß Docy

Bezug
                        
Bezug
Körpererweiterung 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:15 Mi 17.12.2008
Autor: statler

Hi!

> Ja richtig, Denkfehler! Ich denke jetzt, dass man
> [mm]\wurzel[3]{4}[/mm] nicht als [mm]a+b*\wurzel[3]{2}[/mm] schreiben kann,
> denn sonst müsste [mm]b=\wurzel[3]{2}[/mm]   sein, was ja nicht
> geht.

So wirklich stringent ist die Argumentation nicht. Besser: Das Minimalpol. von [mm] \wurzel[3]{2} [/mm] ist [mm] X^3 [/mm] - 2, das ist irreduzibel nach Eisenstein-Kr., und folglich sind [mm] \wurzel[3]{2} [/mm] und [mm] \wurzel[3]{4} [/mm] über [mm] \IQ [/mm] linear unabhängig.

Gruß
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]