matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Körperberchnung~~> Pyramide
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Körperberchnung~~> Pyramide
Körperberchnung~~> Pyramide < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körperberchnung~~> Pyramide: Frage
Status: (Frage) beantwortet Status 
Datum: 15:30 Di 10.05.2005
Autor: APPDKrebszelle

Ich habe diese Frage in kein anderes Forum auf andere Internetseiten gestellt

Hallo ihrs!
Ich bin mal wieder mit meinen Körperberechnungen dran und bin , wie so oft, am verzweifeln. Morgen schreibe ich die wichtigste Klausur meines Lebens (die entscheidet über Abschluss oder nicht -HILFE-)
Ich hänge gerde an der Pyramide fest
Ich soll bei a) V und O berchnen. Gegeben sind a=5cm und h=8cm
Mein Ansatz dafür ist so:
V=1/3a hoch 2 mal a   = V=1/3 5 hoch 2 mal 8= 67 Kubikzentimeter.

O=a(a+2hs) ~hs fehlt                             hs=h hoch 2 +(a/2)hoch2
                                                                hs hoch2 :unterm Wurzelzeichen: 8mal 2,5   hs=4,4

Wenn ich das in die Formel für O einsetzte kommt bei mir 47 raus
Im Buch steht als korrektes Ergebnis 109
WIE KOMM ICH DADRAUF????

b) a=10cm   hs=7cm  gesucht ist V
O=a(a+2hs)
O=10(10+2mal 7)
O=170 ~~> dabei denk ich nix falsch, oder?

V=1/3a hoch 2mal h ~~> hierfür fehlt mir die Höhe... ich hab die Formel für O ein paar mal umgestellt ,aber immer kam das falsche raus.
Das korrekte Ergebnis für V soll 163Kubikmeter sein .
Woher weiß ich wie ich die Formel umstellen muss und wie weiß ich, dass die Formel richtig ist?

Vielen Dank schonmal im Voraus ;-)    

        
Bezug
Körperberchnung~~> Pyramide: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Di 10.05.2005
Autor: Bastiane

Hallo!
Zuerst mal eine ganz große Bitte: benutze doch den Formeleditor!!! Ich kann mit vielen deiner Formeln nichts anfangen, weil sie so schlecht geschrieben sind, dass ich sie nicht verstehe. :-(

> Ich hänge gerde an der Pyramide fest
> Ich soll bei a) V und O berchnen. Gegeben sind a=5cm und
> h=8cm

Da du nur eine Seite gegeben hast, gehe ich mal davon aus, dass deine Pyramide eine quadratische Grundfläche hat, oder? Und du bist sicher, dass h die Höhe der Pyramide und nicht vielleicht die Höhe einer Seite ist??

> Mein Ansatz dafür ist so:
>  V=1/3a hoch 2 mal a   = V=1/3 5 hoch 2 mal 8= 67
> Kubikzentimeter.

Du hast dich zwar links einmal vertippt, das V in der Mitte ist zu viel, und das Ergebnis solltest du besser entweder exakt, also [mm] 66,\overline{6} [/mm] oder noch besser [mm] \bruch{200}{3}, [/mm] oder gerundet, dann aber deutlich, nämlich mit [mm] \approx [/mm] 67 angeben, aber ich glaube, das Prinzip hast du schon verstanden! [daumenhoch]

> O=a(a+2hs) ~hs fehlt                             hs=h hoch
> 2 +(a/2)hoch2
> hs hoch2 :unterm Wurzelzeichen: 8mal 2,5   hs=4,4

Das hier verstehe ich leider überhaupt nicht.
Ich habe mir die Oberflächenformel mal selber hergeleitet:
du brauchst dafür die Grundfläche G, sie ist [mm] =a^2, [/mm] also =25, und viermal die Fläche der Dreiecke. Diese Fläche berechnet sich als Seitelänge (5) mal die Höhe [mm] h_s [/mm] und dann noch durch 2. Du erhältst also:

[mm] O=a^2+4*\bruch{a}{2}*h_s=25+5*8,38 [/mm]
Die Höhe [mm] h_s [/mm] habe ich mit Pythagoras so berechnet:
[mm] h_s=\wurzel{h^2+(\bruch{5}{2})^2} \approx [/mm] 8,38

> Wenn ich das in die Formel für O einsetzte kommt bei mir 47
> raus
> Im Buch steht als korrektes Ergebnis 109
> WIE KOMM ICH DADRAUF????

Eigentlich war ich mir recht sicher, dass meine Rechnung so richtig ist (es sei denn, es ist ein Rechenfehler drin), aber da in deinem Buch etwas anderes steht, bin ich mir nicht so sicher, ob das h wirklich das h der Pyramide war und das [mm] h_s [/mm] fehlte...

> b) a=10cm   hs=7cm  gesucht ist V
> O=a(a+2hs)
>  O=10(10+2mal 7)
>  O=170 ~~> dabei denk ich nix falsch, oder?

Ich dachte, es ist nur das Volumen gesucht, warum willst du dann noch die Oberfläche berechnen? Leider hast du hier nämlich irgendwo einen Rechenfehler - das richtige Ergebnis ist 240 cm!

> V=1/3a hoch 2mal h ~~> hierfür fehlt mir die Höhe... ich
> hab die Formel für O ein paar mal umgestellt ,aber immer
> kam das falsche raus.
> Das korrekte Ergebnis für V soll 163Kubikmeter sein .
> Woher weiß ich wie ich die Formel umstellen muss und wie
> weiß ich, dass die Formel richtig ist?

Ich denke nicht, dass du mit der Oberflächenformel hier weiterkommst. Du musst die Höhe schon anders berechnen. So, wie ich eben schon gesagt habe, mit Pythagoras. Ich versuche gleich nochmal, ein Bild, das ich für eine ähnliche Aufgabe schon mal gemacht habe, hier reinzustellen, muss allerdings gleich weg, sodass ich es nicht mehr genau erklären kann.
Du erhältst h aber folgendermaßen:

[mm] h=\wurzel{h_s^2-(\bruch{a}{2})^2}=\wurzel{49-25}=2*\wurzel{6}\approx [/mm] 4,9

Damit ergibt sich dann auch das genannte Ergebnis.

Viele Grüße
Bastiane
[cap]

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]