Körperaxiome nachweisen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Entscheide jeweils, ob es sich (zusammen mit der gewöhnlichen Addition und Multiplikation) um einen Körper handelt.
a) {a + [mm] b\wurzel{2} [/mm] | a,b [mm] \in \IQ [/mm] } |
Hallo,
ich habe diese Aufgabenstellung und komm da nicht weiter. Also ich muss ja nachweisen, dass es sich dabei um einen Körper handelt oder nicht. Dies mach ich, indem ich alle Körperaxiome nachweise, also z.b.
(K,+) ist eine abelsche Gruppe (Neutrales Element 0)
Also auch das Assoziativitätsgesetz, dass a + (b + c) = (a + b) + c gilt.
Aber irgendwie weiß ich nicht genau, wie ich das machen soll, steh da grad irgendwie auf dem Schlauch. Was genau muss ich da für a und b einsetzen?
Vielen Dank schonmal für ein paar Tips von euch.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
> Entscheide jeweils, ob es sich (zusammen mit der
> gewöhnlichen Addition und Multiplikation) um einen Körper
> handelt.
> a)U:= [mm] \{a + b\wurzel{2} | a,b \in \IQ\ }
[/mm]
> Hallo,
> ich habe diese Aufgabenstellung und komm da nicht weiter.
> Also ich muss ja nachweisen, dass es sich dabei um einen
> Körper handelt oder nicht. Dies mach ich, indem ich alle
> Körperaxiome nachweise,
Hallo,
das kannst Du tun.
Da Du aber sicher weißt, daß [mm] \IR [/mm] ein Körper ist, kannst Du auch zeigen, daß U ein Teilkörper der reellen Zahlen ist, also zeigen:
[mm] 0\in [/mm] U, 1 [mm] \in [/mm] U
a,b [mm] \in [/mm] U\ [mm] \Rightarrow\ [/mm] a + b [mm] \in [/mm] U,\ a [mm] \cdot [/mm] b [mm] \in [/mm] U (Abgeschlossenheit bezüglich Addition und Multiplikation)
a [mm] \in [/mm] U\ [mm] \Rightarrow\ [/mm] -a [mm] \in [/mm] U (Zu jedem Element aus U ist auch das additive Inverse in U.)
a [mm] \in [/mm] U [mm] \setminus \{0\}\ \Rightarrow\ a^{-1} \in [/mm] U (Zu jedem Element aus U mit Ausnahme der Null ist auch das multiplikativ Inverse in U .)
also z.b.
> (K,+) ist eine abelsche Gruppe (Neutrales Element 0)
> Also auch das Assoziativitätsgesetz, dass a + (b + c) =
> (a + b) + c gilt.
>
> Aber irgendwie weiß ich nicht genau, wie ich das machen
> soll, steh da grad irgendwie auf dem Schlauch. Was genau
> muss ich da für a und b einsetzen?
Seien [mm] a,b,c\in [/mm] U.
Dann gibt es [mm] a_i, b_i, c_i\in \IQ, [/mm] i=1,2 mit
[mm] a=a_1+a_2\wurzel{2}, [/mm] b=..., c=...
Es ist
[mm] (a+b)+c=((a_1+a_2\wurzel{2})+(b_1+b_2\wurzel{2}))+(c_1+c_2\wurzel{2})
[/mm]
= ... ... ... ... ... ... ... ...
[mm] =(a_1+a_2\wurzel{2})+((b_1+b_2\wurzel{2})+(c_1+c_2\wurzel{2}))
[/mm]
Du wendest so lange Regeln des Rechnens in [mm] \IR [/mm] an, bis Du schrittweise (mit einer Begründung bei jedem Schritt) unten angekommen bist.
LG Angela
>
> Vielen Dank schonmal für ein paar Tips von euch.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|
|
Vielen Dank für die Hilfe, du hast mir damit sehr weiter geholfen.
Nun bin ich beim beweisen des multiplikativen Inversen angelangt, sodass a * [mm] a^{-1} [/mm] = 1 ergibt. Aber ich finde keines, sodass [mm] (a_{1} [/mm] + [mm] a_{2}\wurzel{2}) [/mm] * [mm] (b_{1} [/mm] + [mm] b_{2}\wurzel{2}) [/mm] = [mm] a_{1}*b_{1} [/mm] + [mm] a_{1}*b_{2}\wurzel{2} [/mm] + [mm] a_{2}\wurzel{2}*b_{1} [/mm] + [mm] a_{2}\wurzel{2}*b_{2}\wurzel{2} [/mm] = 1 ergibt, wenn [mm] a_{1} [/mm] und [mm] a_{2} [/mm] ja nicht frei wählbar sind sondern beliebig.
Ist das so richtig und wenn ja, wie kann ich das beweisen?
|
|
|
|
|
> Vielen Dank für die Hilfe, du hast mir damit sehr weiter
> geholfen.
> Nun bin ich beim beweisen des multiplikativen Inversen
> angelangt, sodass a * [mm]a^{-1}[/mm] = 1 ergibt. Aber ich finde
> keines, sodass [mm](a_{1}[/mm] + [mm]a_{2}\wurzel{2})[/mm] * [mm](b_{1}[/mm] +
> [mm]b_{2}\wurzel{2})[/mm] = [mm]a_{1}*b_{1}[/mm] + [mm]a_{1}*b_{2}\wurzel{2}[/mm] +
> [mm]a_{2}\wurzel{2}*b_{1}[/mm] + [mm]a_{2}\wurzel{2}*b_{2}\wurzel{2}[/mm] = 1
> ergibt, wenn [mm]a_{1}[/mm] und [mm]a_{2}[/mm] ja nicht frei wählbar sind
> sondern beliebig.
> Ist das so richtig und wenn ja, wie kann ich das beweisen?
Du musst [mm] $b_1$ [/mm] und [mm] $b_2$ [/mm] in Abhängigkeit von [mm] $a_1$ [/mm] und [mm] $a_2$ [/mm] ausrechnen, d.h. du hast zwei Unbekannte und eigentlich nur eine Gleichung.
Da aber alle Zahlen aus [mm] $\IQ$ [/mm] kommen, kannst du das geschickt sortieren und dann "Koeffizientenvergleich" machen:
[mm] $a_1*b_1 [/mm] + [mm] 2*a_2*b_2 [/mm] + [mm] \wurzel{2} [/mm] * [mm] (a_1*b_2 [/mm] + [mm] a_2*b_1) [/mm] = 1 + 0 * [mm] \wurzel{2}$
[/mm]
Du kannst in den rationalen Zahlen die Wurzel nicht "kompensieren", d.h. das funktioniert nur dann, wenn auch auf der linken Seite der gleiche Faktor vor der Wurzel steht wie rechts. Gleichermaßen muss die rechte 1 dann identisch sein mit dem Rest der linken Seite.
Damit hast du dann ZWEI Gleichungen mit zwei Variablen, die kannst du auflösen und schon hast du dein Inverses Element da stehen (ggf. musst du beim Rechnen noch Fallunterscheidungen machen).
lg weightgainer
|
|
|
|