matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKörper und Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Körper und Matrizen
Körper und Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper und Matrizen: Frage
Status: (Frage) beantwortet Status 
Datum: 11:03 Sa 20.11.2004
Autor: destiny

Bestimmen Sie für n [mm] \ge1 [/mm] die Potenzen  [mm] A^{n} [/mm] der Matrix A= [mm] \pmat{ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 }, [/mm] A [mm] \in \IR^{3,3}. [/mm]

Danke schön!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Körper und Matrizen: Ansatz
Status: (Antwort) fertig Status 
Datum: 12:26 Sa 20.11.2004
Autor: Bastiane

Hallo!
> Bestimmen Sie für n [mm]\ge1[/mm] die Potenzen  [mm]A^{n}[/mm] der Matrix A=
> [mm]\pmat{ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 },[/mm] A [mm]\in \IR^{3,3}. [/mm]
>  
>
> Danke schön!
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Diese Aufgabe finde ich interessant, deswegen habe ich mal ein kleines bisschen rumgerechnet...
Man muss doch einfach nur die Matrizen immer weiter multiplizieren und dann gucken, welches System dahintersteckt. Und wenn einem das nicht reicht, kann man das Ergebnis noch mit Induktion beweisen.

Also, ich habe berechnet:
[mm] A^2=\pmat{ 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 } [/mm]
[mm] A^3=\pmat{ 0 & 2 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 0 } [/mm]
[mm] A^4=\pmat{ 2 & 0 & 2 \\ 0 & 4 & 0 \\ 2 & 0 & 2 } [/mm]
Weiter hatte ich dann keine Lust mehr, aber bis hierhin finde ich das schon ganz interessant:
Man sieht doch schon, dass sich A und [mm] A^3 [/mm] sehr ähneln - die Einträge haben sich einfach verdoppelt. Und bei [mm] A^2 [/mm] und [mm] A^4 [/mm] ist das genauso. Ich denke, da kann man eine Fallunterscheidung machen, für gerade n und für ungerade n. Und dann ist man auch schon fertig!


Viele Grüße
Bastiane
[breakdance]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]