matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperKörper einer Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Körper einer Menge
Körper einer Menge < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper einer Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Mi 19.11.2008
Autor: eppi1981

Aufgabe
Beweisen Sie, das die Menge [mm] \IQ(\wurzel{2}):=\{a+b*\wurzel{2}|a,b \in \IQ\} \subset \IR [/mm] mit der Addition und Multiplikation wie in [mm] \IR [/mm] einen Körper bildet.

Wie kann man einen Beweis anfangen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Körper einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Mi 19.11.2008
Autor: fred97

Zeige, dass die Körpereigenschaften erfüllt sind.

Kennst Du die ?


FRED

Bezug
                
Bezug
Körper einer Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Mi 19.11.2008
Autor: eppi1981

d.h soll ich zeigen :

1. Additive
i. a+(b+c)=(a+b)+c
ii. a+b = b+a
iii. 0 [mm] \in \IQ(\wurzel{2}) [/mm]
iv. (-a) +a=0
2. Multiplikative
i. a*(b*c)=(a*b)*c
ii. a*b=b*a
iii. 1*a=a
iv. [mm] a^{-1}*a=1 [/mm]

Bezug
                        
Bezug
Körper einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Mi 19.11.2008
Autor: fred97


> d.h soll ich zeigen :
>  
> 1. Additive
>   i. a+(b+c)=(a+b)+c
>   ii. a+b = b+a
>   iii. 0 [mm]\in \IQ(\wurzel{2})[/mm]
>   iv. (-a) +a=0
>  2. Multiplikative
>   i. a*(b*c)=(a*b)*c
>   ii. a*b=b*a
>   iii. 1*a=a
>   iv. [mm]a^{-1}*a=1[/mm]  


So ist es. Wenn Du Dich geschickt anstellst, kannst Du immens abkürzen.

Als Beispiel:Wenn Du in   [mm] \IQ(\wurzel{2}) [/mm] zeigen willst, dass a+b = b+a gilt, so kannst Du 2 Wege einschlagen:

1. Stumpfes nachrechnen
oder
2. berufe Dich auf die Addition in [mm] \IR [/mm]

FRED



Bezug
                                
Bezug
Körper einer Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 Mi 19.11.2008
Autor: eppi1981

zur Additive i.

Seien a,b,c [mm] \inQ; [/mm]
[mm] a=a_{1}+a_{2}\wurzel{2} [/mm]
[mm] b=b_{1}+b_{2}\wurzel{2} [/mm]
[mm] c=c_{1}+c_{2}\wurzel{2} [/mm]

[mm] a+(b+c)=a_{1}+a_{2}\wurzel{2}+(b_{1}+b_{2}\wurzel{2}+c_{1}+c_{2}\wurzel{2})= a_{1}+b_{1}+c_{1}+(a_{2}+b_{2}+c_{2})\wurzel{2} [/mm]
[mm] (a+b)+c=(a_{1}+a_{2}\wurzel{2}+b_{1}+b_{2}\wurzel{2})+c_{1}+c_{2}\wurzel{2}=a_{1}+b_{1}+c_{1}+(a_{2}+b_{2}+c_{2})\wurzel{2} [/mm]
[mm] \Rightarrow [/mm] a+(b+c)=(a+b)+c

ist das richtig?

Bezug
                                        
Bezug
Körper einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Mi 19.11.2008
Autor: schachuzipus

Hallo eppi1981,

> zur Additive i.
>  
> Seien a,b,c [mm]\inQ;[/mm]
>  [mm]a=a_{1}+a_{2}\wurzel{2}[/mm]
>  [mm]b=b_{1}+b_{2}\wurzel{2}[/mm]
>  [mm]c=c_{1}+c_{2}\wurzel{2}[/mm]
>  
> [mm]a+(b+c)=a_{1}+a_{2}\wurzel{2}+(b_{1}+b_{2}\wurzel{2}+c_{1}+c_{2}\wurzel{2})= a_{1}+b_{1}+c_{1}+(a_{2}+b_{2}+c_{2})\wurzel{2}[/mm]
>  
> [mm](a+b)+c=(a_{1}+a_{2}\wurzel{2}+b_{1}+b_{2}\wurzel{2})+c_{1}+c_{2}\wurzel{2}=a_{1}+b_{1}+c_{1}+(a_{2}+b_{2}+c_{2})\wurzel{2}[/mm]
>  [mm]\Rightarrow[/mm] a+(b+c)=(a+b)+c
>  
> ist das richtig?

[ok]

passt!

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]