matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesKörper der reellen Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Körper der reellen Zahlen
Körper der reellen Zahlen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper der reellen Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:27 Di 02.10.2007
Autor: Schalk

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ZU beweisende Rechenregeln in [mm] (\IR, [/mm] +, *):

(-x) * y = x *(-y) = - (x *y) und

(-x) *(-y) = x *y


(-x) *y = (-1) *x *y = x *(-1) *y
= x *(-y) = x * (-1) * y = (-1) * x * y
= (-1) * (x * y)
= - (x * y)


und Zunächst:

(-1) * x  * (-1) * y = x * y
(-1) * x * [mm] x^{-1} [/mm] * (-1) y * [mm] y^{-1} [/mm] = x * [mm] x^{-1} [/mm] * y * [mm] y^{-1} [/mm]
(-1) * 1 * (-1) * 1= 1
(-1) * (-1) = 1

Somit können wir zeigen, dass

(-x) * (-y) = (-1)*x *(-1) *y = (-1) *(-1) *x *y = 1 *x * y = x *y

Reicht dies für eine Beweisführung aus?

        
Bezug
Körper der reellen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:57 Di 02.10.2007
Autor: angela.h.b.


> ZU beweisende Rechenregeln in [mm](\IR,[/mm] +, *):
>  
> (-x) * y = x *(-y) = - (x *y) und
>  
> (-x) *(-y) = x *y

Hallo,

[willkommenmr].

Ohne daß Du uns mitteilst, was Du zum Beweis benutzen darfst, können wir Dir im Grunde gar nicht helfen.

Aber wir sind hier recht groß im Hellsehen, und deshalb errate ich, daß Ihr wißt, daß [mm] \IR [/mm] ein Körper ist, also die entsprechenden Axiome gelten, und Ihr die Rechenregeln oben mit diesen beweisen sollt.

Wenn das so ist, wie ich es mir denke, mußt Du jeden Schritt, den Du tust, mit diesen Axiomen begründen.

>  

>
> (-x) *y = (-1) *x *y = x *(-1) *y
>  = x *(-y) = x * (-1) * y = (-1) * x * y
> = (-1) * (x * y)
>  = - (x * y)

Allein schon, weil hier jegliche Begründung fehlt, kann das so nicht richtig sein.
(Du mußt deshalb nicht allzu betrübt sein, so etwas macht "man" am Anfang leicht verkehrt, gerade bei Dingen wie bei diesen Regeln, die einem seit Kl.7 in Fleisch und Blut übergegangen sind.)

Ich will Dir nun an einer Teilaussage vormachen, wie so etwas geht.

Zunächst die Körperaxiome.

In [mm] (\IR,+,*) [/mm] gelten die

Axiome der Addition

K1. (x+y)+z=x+(y+z) für alle x,y,z [mm] \in \IR [/mm]
K2. x+y=y+x für alle x,y [mm] \in \IR [/mm]
K3. x+0=x für alle [mm] x\in \IR. [/mm]
K4. Zu jedem x [mm] \in \IR [/mm] gibt es genau ein -x [mm] \in \IR [/mm] mit x+(-x)=0

und die Axiome der Multiplikation

M1. (x*y)*z=x*(y*z) für alle x,y,z [mm] \in \IR [/mm]
M2. x*y=y*x für alle x,y [mm] \in \IR [/mm]
M3. x*1=x für alle [mm] x\in \IR. [/mm]
M4. Zu jedem x [mm] \in \IR [/mm] mit x [mm] \not= [/mm] 0 gibt es genau ein [mm] x^{-1} \in \IR [/mm] mit [mm] x*x^{-1}=1 [/mm] .

Distributivgesetz

D.  x*(y+z)=x*y+x*z   für alle x,y,z [mm] \in \IR [/mm]

Möglicherweise sehen Deine Axiome geringfügig anders aus, das ist für das, was ich Dir zeigen möchte, egal.

Ich gehe außerdem davon aus, daß Ihr schon gezeigt habt, daß (*) 0*x=0 für alle [mm] x\in \IR. [/mm]


Zu zeigen ist nun (-x) * y = -(x*y) für alle x,y [mm] \in \IR. [/mm]

Das ist ja zunächst gar nicht so selbstverständlich, sondern vielleicht sogar ein Grund zum Staunen: das Produkt aus dem Inversen bzgl. der Addition von x und y ergibt dasselbe wie das Inverse bzgl. der Addition vom Produkt aus x und y.

Beweis: Seien x,y [mm] \in \IR. [/mm]

Es ist

0=0*y    wegen (*)

=(x+(-x))*y   wegen K4

=x*y+(-x)*y   wegen D.

Aus 0=x*y+(-x)*y folgt nun wegen K4: es ist (-x)*y das Inverse von x*y bzgl der Addition, also (-x)*y=-(x*y), was zu beweisen war.

Ich hoffe, daß Dir das etwas fürs weitere Vorgehen hilft.

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]