matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieKörper, Polynom, ggT
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Körper, Polynom, ggT
Körper, Polynom, ggT < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper, Polynom, ggT: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:35 Di 05.06.2007
Autor: LenaFre

Aufgabe
Zeigen Sie für einen Körper K und Polynome [mm] f_{1}, f_{2}, [/mm] g [mm] \in [/mm] K[t], [mm] g\not=0: [/mm]
[mm] f_{1}\equiv f_{2}(mod [/mm] g K[t]) [mm] \Rightarrow ggT(f_{1},g) [/mm] = [mm] ggT(f_{2}, [/mm] g)

Hallo zusammen!

Leider finde ich gar keinen Ansatz zu der Aufgabe dort oben.
Ich hoffe ihr könnt mir weiterhelfen und schonmal vielen Dank dafür!

        
Bezug
Körper, Polynom, ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 09:58 Mi 06.06.2007
Autor: felixf

Hallo Lena!

> Zeigen Sie für einen Körper K und Polynome [mm]f_{1}, f_{2},[/mm] g
> [mm]\in[/mm] K[t], [mm]g\not=0:[/mm]
>   [mm]f_{1}\equiv f_{2}(mod[/mm] g K[t]) [mm]\Rightarrow ggT(f_{1},g)[/mm] = [mm]ggT(f_{2},[/mm] g)
>  Hallo zusammen!
>  
> Leider finde ich gar keinen Ansatz zu der Aufgabe dort oben.
> Ich hoffe ihr könnt mir weiterhelfen und schonmal vielen Dank dafür!

Das haengt ein wenig davon ab wie ihr den ggT definiert habt und was ihr schon darueber wisst. Im Allgemeinen wuerd ich es so beweisen: zeige, dass ein Polynom [mm]h \in K[t][/mm] genau dann ein Teiler von [mm] $f_1$ [/mm] und $g$ ist, wenn es ein Teiler von [mm] $f_2$ [/mm] und $g$ ist.

(Und fuer diese Aussage benutzt du dann, dass $g$ ein Teiler von [mm] $f_2 [/mm] - [mm] f_1$ [/mm] ist.)

Da der ggT normalerweise ueber Teiler definiert ist, folgt daraus, dass [mm] $ggT(f_1, [/mm] g) = [mm] ggT(f_2, [/mm] g)$ ist.

LG Felix


Bezug
                
Bezug
Körper, Polynom, ggT: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:25 Mi 06.06.2007
Autor: LenaFre

Danke für deine Antwort. Wir haben den ggT folgendermaßen definiert:

d [mm] \in [/mm] R heißt ggT von [mm] a_{1},a_{2},.....,a_{n}, [/mm] falls:
1) d ist gemeinssamer Teiler von [mm] a_{1},a_{2},.....,a_{n} [/mm] und
2) jeder gemeinsamer Teiler c von  [mm] a_{1},a_{2},.....,a_{n} [/mm] erfült: c teilt d

Und wir wissen auch, dass a [mm] \equiv [/mm] b mod(m) [mm] \gdw [/mm] m teilt (a-b).

Ich verstehe nicht was du mit $ meinst? Und wie zeige ich, dass  h genau dann ein Teiler von  [mm] f_{1} [/mm] und  g  ist, wenn es ein Teiler von  [mm] f_{2} [/mm] und  g  ist?

Bezug
                        
Bezug
Körper, Polynom, ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Mi 06.06.2007
Autor: felixf

Hallo!

> Danke für deine Antwort. Wir haben den ggT folgendermaßen
> definiert:
>  
> d [mm]\in[/mm] R heißt ggT von [mm]a_{1},a_{2},.....,a_{n},[/mm] falls:
>  1) d ist gemeinssamer Teiler von [mm]a_{1},a_{2},.....,a_{n}[/mm]
> und
>  2) jeder gemeinsamer Teiler c von  [mm]a_{1},a_{2},.....,a_{n}[/mm]
> erfült: c teilt d

Das ist die normale Definition. Gut.

> Und wir wissen auch, dass a [mm]\equiv[/mm] b mod(m) [mm]\gdw[/mm] m teilt
> (a-b).

Genau.

> Ich verstehe nicht was du mit $ meinst? Und wie zeige ich,

Da hat mir der Formeleditor einen Streich gespielt, das war ein Formelanfang/Formelende. Schau es dir nochmal an, ich habs jetzt verbessert.

> dass  h genau dann ein Teiler von  [mm]f_{1}[/mm] und  g  ist, wenn
> es ein Teiler von  [mm]f_{2}[/mm] und  g  ist?  

Nimm doch mal einen Teiler $h$ von [mm] $f_1$ [/mm] und $g$. Dann gilt [mm] $f_1 [/mm] = h [mm] \hat{f}_1$ [/mm] und $g = h [mm] \hat{g}$ [/mm] mit [mm]\hat{f}_1, \hat{g} \in K[t][/mm]. Jetzt musst du zeigen, dass $h$ auch ein Teiler von [mm] $f_2$ [/mm] ist.

Jetzt weisst du aber, dass $g$ ein Teiler von [mm] $f_1 [/mm] - [mm] f_2$ [/mm] ist, also dass [mm] $f_1 [/mm] - [mm] f_2 [/mm] = g [mm] \tilde{g}$ [/mm] ist mit [mm]\tilde{g} \in K[t][/mm]. Damit ist [mm] $f_2 [/mm] = [mm] f_1 [/mm] - g [mm] \tilde{g} [/mm] = ...$ und jetzt musst du mal ein wenig einsetzen...

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]