matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperKörper, Hauptidealring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Körper, Hauptidealring
Körper, Hauptidealring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper, Hauptidealring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Mi 22.09.2010
Autor: T_sleeper

Aufgabe
Welche der folgenden Ringe sind Körper, Integritätsringe, Hauptidealringe, faktorielle Ringe:

[mm] R_{1}=\mathbb{Z}[X], R_{2}=\mathbb{Z}[X]/(X^{2}+1),\, R_{3}=\mathbb{Q}[X]/(X^{2}-X+1),\, R_{4}=\mathbb{F}_{5}/(X^{2}-X+1),\, R_{5}=\mathbb{F}_{7}[X]/(X^{2}-X+1) [/mm]

Wieviele Ideale, Primideale und Einheiten besitzt der Ring [mm] R_{5}? [/mm]

Hallo,

also [mm] R_{1} [/mm] ist faktoriell weil [mm] \mathbb{Z} [/mm] faktoriell ist, also auch ein Integritätsbereich (IBR). Kein Hauptidealring. Also auch kein Körper.

Nun interessiert mich bei den anderen Ringen, wie ich das lösen soll. Die Aufgabe soll relativ schnell lösbar sein. Ich kenne aber nur die Sätze, wenn das entsprechende Ideal maximal ist, dann ist der Ring ein Körper und wenn es prim ist ein IBR. Das ist doch dann aber relativ aufwendig das immer zu prüfen. Bei [mm] R_{2} [/mm] ist [mm] X^{2}+1 [/mm] das Minimalpolynom von i. Dann sollten das nach Homomorphiesatz doch die gaußschen Zahlen sein (also zumindest isomorph dazu). Die sind kein Körper. Aber doch ein IBR.

Naja bei den anderen weiß ich nicht so recht wie ichs machen soll. Ich hab mal irgendwo gelesen, dass [mm] \mathbb{F}_{4}\simeq\mathbb{F}_{2}[X]/(X^{2}+X-1) [/mm] ist oder so ähnlich. Aber warum ist das so, also wie sieht man das?

Für die Frage mit den Idealen müsste ich erstmal wissen, was [mm] R_{5} [/mm] denn nun ist.

Grüße

        
Bezug
Körper, Hauptidealring: Antwort
Status: (Antwort) fertig Status 
Datum: 03:42 Fr 24.09.2010
Autor: felixf

Moin!

> Welche der folgenden Ringe sind Körper, Integritätsringe,
> Hauptidealringe, faktorielle Ringe:
>  
> [mm]R_{1}=\mathbb{Z}[X], R_{2}=\mathbb{Z}[X]/(X^{2}+1),\, R_{3}=\mathbb{Q}[X]/(X^{2}-X+1),\, R_{4}=\mathbb{F}_{5}/(X^{2}-X+1),\, R_{5}=\mathbb{F}_{7}[X]/(X^{2}-X+1)[/mm]

Bei [mm] $R_4$ [/mm] fehlt ein $[X]$, oder?

> Wieviele Ideale, Primideale und Einheiten besitzt der Ring
> [mm]R_{5}?[/mm]
>  
> also [mm]R_{1}[/mm] ist faktoriell weil [mm]\mathbb{Z}[/mm] faktoriell ist,
> also auch ein Integritätsbereich (IBR). Kein
> Hauptidealring. Also auch kein Körper.

Genau.

> Nun interessiert mich bei den anderen Ringen, wie ich das
> lösen soll. Die Aufgabe soll relativ schnell lösbar sein.
>
> Ich kenne aber nur die Sätze, wenn das entsprechende Ideal
> maximal ist, dann ist der Ring ein Körper und wenn es prim
> ist ein IBR. Das ist doch dann aber relativ aufwendig das
> immer zu prüfen. Bei [mm]R_{2}[/mm] ist [mm]X^{2}+1[/mm] das Minimalpolynom
> von i. Dann sollten das nach Homomorphiesatz doch die
> gaußschen Zahlen sein (also zumindest isomorph dazu). Die
> sind kein Körper. Aber doch ein IBR.

Genau. Und die Gaussschen Zahlen sind ein Euklidischer Ring, also auch ein Hauptidealring und somit auch faktoriell.

Das Polynom [mm] $X^2 [/mm] - X + 1$ ist irreduzibel ueber [mm] $\IZ$ [/mm] (Reduktion modulo 2) und somit auch ueber [mm] $\IQ$ [/mm] (Gauss), womit [mm] $\IQ[X] [/mm] / [mm] (X^2 [/mm] - X + 1)$ ein Koerper ist.

> Naja bei den anderen weiß ich nicht so recht wie ichs
> machen soll. Ich hab mal irgendwo gelesen, dass
> [mm]\mathbb{F}_{4}\simeq\mathbb{F}_{2}[X]/(X^{2}+X-1)[/mm] ist oder
> so ähnlich. Aber warum ist das so, also wie sieht man das?

Nun, es ist eine Erweiterung von [mm] $\IF_2$, [/mm] die Grad 2 hat, und [mm] $X^2 [/mm] + X + 1 = [mm] X^2 [/mm] + X - 1$ ist irreduzibel ueber [mm] $\IF_2$. [/mm] Deshalb ist [mm] $\IF_2[X] [/mm] / [mm] (X^2 [/mm] + X - 1)$ ein Koerper mit [mm] $2^2 [/mm] = 4$ Elementen, also gleich [mm] $\IF_4$. [/mm]

> Für die Frage mit den Idealen müsste ich erstmal wissen,
> was [mm]R_{5}[/mm] denn nun ist.

Nun, dazu musst du dir [mm] $X^2 [/mm] - X + 1$ ueber [mm] $\IF_7$ [/mm] anschauen. Ist es irreduzibel? Dazu musst du nach Nullstellen suchen. 0 und 1 sind sicher keine. Nach etwas Rechenarbeit siehst du, dass 3 und 5 Nullstellen sind, also gilt [mm] $X^2 [/mm] - X + 1 = (X - 3) (X - 5)$ ist in [mm] $\IF_7[X]$. [/mm]

Jetzt kannst du [mm] $R_5$ [/mm] nach dem chin. Restsatz als Produkt zweier Ringe schreiben (welche?). Diese Ringe sind Koerper (warum?).

Jetzt beachte: die Ideale in $R [mm] \times [/mm] S$ sind von der Form $I [mm] \times [/mm] J$, wobei $I [mm] \subseteq [/mm] R$ ein Ideal und $J [mm] \subseteq [/mm] S$ ein Ideal ist. Damit kannst du die Anzahl der Ideale in [mm] $R_5$ [/mm] sofort angeben. Alternativ kannst du die Anzahl der normierten Teiler von [mm] $X^2 [/mm] - X + 1$ zaehlen; diese entsprechen den Idealen in [mm] $\IF_7[X] [/mm] / [mm] (X^2 [/mm] - X + 1)$.

Primideale entsprechen den Primteilern von [mm] $X^2 [/mm] - X + 1$, die kannst du auch recht fix hinschreiben.

Fuer die Einheiten schaust du am besten im Produkt zweier Koerper nach: ein Element ist im Produkt Einheit, wenn es in beiden Faktoren Einheit ist. Damit kannst du schnell die Anzahl der Einheiten hinschreiben.

Alternativ kannst du zaehlen, wieviele Polynome in [mm] $\IF_7[X]$ [/mm] mit Grad $< 2$ teilerfremd zu [mm] $X^2 [/mm] - X + 1$ sind -- aber das ist recht muehsam. Du kannst das auch etwas geschickter aus kombinatorischer Sicht anschauen und somit die Anzahl schnell bestimmen, ohne alles hinzuschreiben. Denk etwas drueber nach...

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]