matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKörper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Körper
Körper < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper: aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:49 Mi 17.11.2004
Autor: Sandra21

Hallo
Kann mir vielleicht jemand ein Hinweis geben wie ich das zeigen kann.

Es sei K ein Körper und x,y [mm] \in K^n, [/mm] x  [mm] \not= [/mm]  y.
i) Zeigen Sie G(x;y-x) = G(y;x-y).
ii) Seien weiterhin u,v  [mm] \in K^n, [/mm] v  [mm] \not= [/mm]  0. Zeigen Sie :
               x,y  [mm] \in [/mm] G(u;v) daraus folgt G(u,v)=G(x,y-x)


Wäre super wenn mir jemand helfen könnte. Danke

Sandra

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Körper: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:25 Mi 17.11.2004
Autor: Gnometech

Ich habe eine Rückfrage...

Was ist $G(u;v)$ für Vektoren $u,v [mm] \in K^n$? [/mm] Ohne die Definition kann ich Dir keinen Hinweis geben.

Und so viel scheint die Aufgabe mit dem Grundkörper nicht zu tun zu haben... es ist jedenfalls keine Aufgabe über Körper, wie man nach dem Betreff denken könnte...

Lars



Bezug
                
Bezug
Körper: Definition von G
Status: (Frage) beantwortet Status 
Datum: 18:52 Do 18.11.2004
Autor: Mausi2911

Hallo!

Hab die gleiche Aufgabe auch zu lösen, und ebenfalls keine Ahnung wie.
Kann dir allerdings die Def. für G (u,v) geben.Es handelt sich um die Gerade durch u in Richtung v.
Hoffe, du kannst uns jetzt helfen.

Liebe Grüße
Sonja

Bezug
                        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 10:24 Sa 20.11.2004
Autor: Stefan

Hallo!

Ich mache euch mal den ersten Teil von der (i) vor, vielleicht bekommt ihr den Rest dann ja selber hin.

Wir wollen

$G(x;y-x) [mm] \subset [/mm] G(y;x-y)$

zeigen.

Es sei also $z [mm] \in [/mm] G(x;y-x)$. Dann gibt es ein [mm] $\lambda \in \IR$ [/mm] mit

$z = x + [mm] \lambda \cdot [/mm] (y-x)$.

Dann folgt:

$z = x + [mm] \lambda \cdot [/mm] (y-x)$

$= [mm] \lambda [/mm] y + [mm] (1-\lambda) [/mm] x$

$= y + [mm] (1-\lambda)(x-y)$ [/mm]

[mm] $\in [/mm] G(y;x-y)$.

Den Rest bekommt ihr jetzt vielleicht selber hin. Wenn nicht, dann meldet euch bitte noch einmal.

Liebe Grüße
Stefan

Bezug
        
Bezug
Körper: Vorschlag zum Vorgehen
Status: (Antwort) fertig Status 
Datum: 15:18 Fr 19.11.2004
Autor: Paula_Pichler

Ahoi:

Ganz entscheidend ist natürlich die nachgelieferte Auskunft, dass G(x,u) eine Gerade durch x in Richtung u ist. Es geht also um Geometrie im Vektorraum K hoch n. Dann sollte man sich als allererstes die zu beweisenden Behauptungen  in geometrische Sprache übersetzen: die Gerade durch x in Richtung y-x stimmt mit der Geraden durch y in Richtung x-y überein. Wohlgemerkt, das ist kein Beweis, aber ganz unentbehrlich um sich klarzumachen, worüber man eigentlich redet. Für den eigentlichen Beweis muss man dann auf die analytische Definition von G(x,u) als Menge aller x+au mit a aus R zurückgehen.

Viel Erfolg - PP

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]