matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKörper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Körper
Körper < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Mo 31.10.2005
Autor: nicole12

Sei K Körper und [mm] P\subset [/mm] K eine Teilmenge , die folgenden Axiomen genügt:

P1) Für jedes a [mm] \in [/mm] K gilt entweder a=0 oder a [mm] \in [/mm] P oder -a [mm] \in [/mm] P.
P2) Aus a,b [mm] \in [/mm] p folgt a+b [mm] \in [/mm] P
P3) Aus a,b [mm] \in [/mm] P folgt a*b [mm] \in [/mm] P

Zeigen sie, dass durch  a<b [mm] \gdw [/mm] b-a [mm] \in [/mm] P eine Anordnung von K definiert wird.

Zeigen sie außerdem:Ist K angeordneter Körper, so erfüllt P ={a [mm] \in [/mm] K:0<a} die Axiome P1 bis P3.

Wenn ihr mir helfen könntet wär echt spitze!

        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 09:15 Di 01.11.2005
Autor: angela.h.b.


> Sei K Körper und [mm]P\subset[/mm] K eine Teilmenge , die folgenden
> Axiomen genügt:
>  
> P1) Für jedes a [mm]\in[/mm] K gilt entweder a=0 oder a [mm]\in[/mm] P oder
> -a [mm]\in[/mm] P.
>  P2) Aus a,b [mm]\in[/mm] p folgt a+b [mm]\in[/mm] P
>  P3) Aus a,b [mm]\in[/mm] P folgt a*b [mm]\in[/mm] P
>  
> Zeigen sie, dass durch  a<b [mm]\gdw[/mm] b-a [mm]\in[/mm] P eine Anordnung
> von K definiert wird.

Hallo,

hier mußt Du Dir zuerst darüber klar werden, was "Anordnung von K" bedeutet. Wie ist eine Anordnung definiert? Und die Gültigkeit dieser Bedingungen ist nun für  a<b [mm]\gdw[/mm] b-a [mm]\in[/mm] P nachzuweisen.

Mit welcher der Bedingungen hattest Du denn Probleme?

>  
> Zeigen sie außerdem:Ist K angeordneter Körper, so erfüllt P
> ={a [mm] \in [/mm] K:0<a} die Axiome P1 bis P3.

Nun wird ein angeordneter Körper und eine ganz bestimmte, klar definierte Teilmenge desselben vorgegeben. Nämlich die Teilmenge von K, welche alle positiven Elemente enthält.

Und nun mußt Du nachschauen, ob P1), P2), P3) erfüllt sind. Gab es an einer bestimmten Stelle ein Problem?

Wichtig ist bei solchen Aufgaben, daß Du die Vokabeln beherrscht. Hier sind das "Körper", "Anordnung", "angeordneter Körper".

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]