matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteKoch Kurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Grenzwerte" - Koch Kurve
Koch Kurve < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koch Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Mo 03.04.2017
Autor: Trikolon

Hallo,

ich hätte folgende Frage: wie kann man begründen dass die Fläche der Koch Kurve durch den Umfang des Anfangsdreiecks begrenzt ist?

        
Bezug
Koch Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Mo 03.04.2017
Autor: Diophant

Hallo,

>

> ich hätte folgende Frage: wie kann man begründen dass die
> Fläche der Koch Kurve durch den Umfang des Anfangsdreiecks
> begrenzt ist?

Meinst du begrenzt im Sinne von beschränkt? Da fiele mir auf Anhieb nichts weiteres ein, als nachzurechnen.

Gruß, Diophant

Bezug
                
Bezug
Koch Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Mo 03.04.2017
Autor: Trikolon

Ja, das hatte ich so gemeint.

Bezug
                        
Bezug
Koch Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 00:32 Di 04.04.2017
Autor: leduart

Hallo
meinst du wirklich Fläche durch Umfang begrenzt? wie kann man eine Fläche durch eine Länge abschätzen?
es ist leicht zu zeigen dass die Kurve innerhalb des z.B. doppelten Dreiecks bleibt.
Gruß ledum

Bezug
                                
Bezug
Koch Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:42 Di 04.04.2017
Autor: Trikolon

Sorry das war natürlich ein  Vertippt, ich meinte nicht Umfang sondern Umkreis des Ausgangsdreiecks.

Bezug
                                        
Bezug
Koch Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 09:20 Di 04.04.2017
Autor: Diophant

Hallo,

> Sorry das war natürlich ein Vertippt, ich meinte nicht
> Umfang sondern Umkreis des Ausgangsdreiecks.

Hm, da muss man sich aber schon arg vertippen und viel Glück haben, dass wieder ein sinnnvolles Wort herauskommt...

Deine Grundfigur ist ein gleichseitiges Dreieck, daraus bestimmst du den Radius des Umkreises. Tipp: im gleichseitigen Dreieck fallen Schwerpunkt Höhenschnittpunkt und Umkreismittelpunkt zusammen.

Jetzt bildest du eine geometrische Reihe aus den Höhen der mit jeder Iterationsstufe aufgesetzten Dreiecke. Zu dieser Reihe musst du noch ein Drittel deiner Dreieckshöhe hinzuaddieren und dann nachrechnen, dass der Grenzwert (inklusive dem Höhen-Drittel) kleiner oder gleich dem Umkreisradius ist.


Gruß, Diophant

Bezug
        
Bezug
Koch Kurve: Problem gelöst
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:57 Do 06.04.2017
Autor: rabilein1


> ich hätte folgende Frage: wie kann man begründen dass die Fläche der Koch Kurve durch den Umfang des Anfangsdreiecks begrenzt ist?

Was ist eine "Koch Kurve"?
Was ist ein "Anfangsdreieck"?

Naja, dass dann auch noch "Umfang" und "Umkreis" verwechselt wurde, ist dann auch egal.

Aber mittlerweile ist das Problem ja gelöst.





Bezug
                
Bezug
Koch Kurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:16 Do 06.04.2017
Autor: Diophant

Hallo,

> Was ist eine "Koch Kurve"?

Wozu die Frage: wenn man es nicht weiß, kann man es []recherchieren.

> Was ist ein "Anfangsdreieck"?

Das weiß man dann auch.

> Naja, dass dann auch noch "Umfang" und "Umkreis"
> verwechselt wurde, ist dann auch egal.

Solche Einlassungen sind völlig unnötig bzw. tendenziell provozierend, dabei aber sachlich völlig sinnfrei. Ich verstehe nicht, welchem Zweck das dient. Aber mein Fehler besteht wohl schon in dem Versuch, das verstehen zu wollen...

Gruß, Diophant

Bezug
                        
Bezug
Koch Kurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:15 Sa 08.04.2017
Autor: rabilein1


> Aber mein Fehler besteht wohl schon in dem Versuch, das verstehen zu wollen ...
>  
> Gruß, Diophant

Genau. Das hast du richtig erkannt.

Es gibt Dinge auf der Welt, die sind schwer zu verstehen (für mich ist das die Mathematik - für dich ist das mein Kommentar).

Der Versuch, sie zu verstehen, scheitert dann oftmals.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]