matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGraphentheorieKnotenzusammenhang polynomiell
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Graphentheorie" - Knotenzusammenhang polynomiell
Knotenzusammenhang polynomiell < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Knotenzusammenhang polynomiell: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 Mo 22.01.2007
Autor: Bastiane

Aufgabe
Wie lässt sich der Knotenzusammenhang eines ungerichteten Graphen in polynomieller Zeit bestimmen?

Hallo zusammen!

Ich würde diese Aufgabe eigentlich einfach so lösen, dass ich für jeden Knoten gucke, welchen Grad er hat, und dann das Minimum davon nehme. Ist das dann nicht die Knotenzusammenhangszahl? (siehe auch meine andere Frage...)
Und das dürfte ja wohl polynomiell gehen: wenn ich die Knoten in einer Adjazenzliste gespeichert habe, kann ich doch die Liste für jeden Knoten durchgehen und gucken, wie viele Nachbarn er hat. Da habe ich dann maximal n(n-1) Knoten betrachtet. Und das Minimum berechnen geht doch mit n-1 Vergleichen, bei n Zahlen.

Aber irgendwie scheint mir das zu einfach - wo liegt der Fehler? Und wie macht man es besser?

Ach ja, zuletzt haben wir minimum cost flows betrachtet - kann man das damit irgendwie machen? Oder wieso steht so eine Aufgabe jetzt auf dem Übungszettel?

Viele Grüße
Bastiane
[cap]


        
Bezug
Knotenzusammenhang polynomiell: Antwort
Status: (Antwort) fertig Status 
Datum: 10:29 Di 23.01.2007
Autor: mathiash

Hallolidu Bastiane,

die Knotenzusammenhangszahl (kurz: der Knotenzusammenhang) von G ist das maximum aller k, so dass es keine
Teilmenge von k Knoten in G gibt, deren Wegnahme den verbleibenden Restgraphen unzusammenhängend macht - und dies ist eine globale EWigenschaft von G, die nicht allein vom Knotengrad abhängt.

Du deutest an, es mit Min-Cost Flow lösen zu wollen:

Ok, sagen wir, wir testen mittels Min-Cost Flow separat für jedes Paar von Knoten u,v von G, ob Wegnahme von k anderen Knoten die Knoten u und v trennt.

Wie können wir das mit Min-Cost Flow machen ?

Sagen wir , es soll der Wert k von u nach v fliessen, also sowas wie b(u)=-k, b(v)=k, und b(w)=0, [mm] w\in V\setminus\{u,v\}. [/mm]

Dann nehmen wir Kantenkapazitäten 1 und Kantenkosten  0, also reduzieren wir es essentiell nur auf b-Flow, wir brauchen scheinbar die Kantenkosten gar nicht.

Könnte das klappen ?

Lieben Gruss,

Mathias


ps. Daria schrieb, sie sei noch krank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]