matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGraphentheorieKnotenzusammenhang
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Graphentheorie" - Knotenzusammenhang
Knotenzusammenhang < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Knotenzusammenhang: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:58 Mo 22.01.2007
Autor: Bastiane

Hallo!

Ich habe nur eine kurze Frage. Wenn ein Graph k-knotenzusammen hängend ist, bedeutet das ja, dass man beliebige (k-1) Knoten wegnehmen kann, und der Graph immer noch zusammenhängend ist. Dann ist klar, dass bei einem solchen Graphen jeder Knoten mindestens Grad k haben muss. Aber gilt das auch umgekehrt herum? Wenn jeder Knoten mindestens Grad k hat, ist der Graph dann k-zusammenhängend?

Viele Grüße
Bastiane
[cap]


        
Bezug
Knotenzusammenhang: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Di 23.01.2007
Autor: mathiash

Halluliod Bastianchen,
nimm zwei knotendisjunkte Cliquen der Größe k, dieser Graph erfullt die Gradbedingung, aber er ist noch nicht mal einfach zusammenhángend.

Gruss,

Mathias

Bezug
                
Bezug
Knotenzusammenhang: und wenn zusammenhängend?
Status: (Frage) beantwortet Status 
Datum: 21:51 Di 23.01.2007
Autor: Bastiane

Lieber Mathias!

Für mich ist ein Graph - wenn nicht extra erwähnt - immer als zusammenhängend gedacht. Gilt die Aussage denn dann?

Viele Grüße
Bastiane
[cap]


Bezug
                        
Bezug
Knotenzusammenhang: Antwort
Status: (Antwort) fertig Status 
Datum: 08:32 Mi 24.01.2007
Autor: mathiash

Liebe Chris,

leider auch nicht, denn dann kannst Du sowas machen wie zwei Cliquen nehmen und sie an einem Knoten verschmelzen, dieser heisst dann Artikulationspunt, ist also das Knoten-Pendant zu einer Brücke.

Lieben Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]