matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeutsche Mathe-OlympiadeKnobelaufgabe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Deutsche Mathe-Olympiade" - Knobelaufgabe
Knobelaufgabe < Deutsche MO < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Knobelaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:12 Mi 14.03.2012
Autor: mathestudent111

Aufgabe
Ein Käfer sitzt am Morgen am Fuße eines Baumes von 2 m Höhe. Im Laufe des Tages krabbelt der Käfer einen Meter am Stamm nach oben. In der folgenden Nacht, während der Käfer schläft, wächst der Baum - entlang der gesamten Länge gleichmäßig - um einen Meter. Am folgenden Tag und in der folgenden Nacht wiederholt sich der Vorgang: Der Käfer krabbelt jeden Tag einen Meter weit, nachts wächst der Baum um einen Meter. Erreicht der Käfer auf diese Weise jemals die Spitze des Baumes?

Hey Leute,

die Lösung ist dass der Käfer irgendwann es schafft.
Aber wie komme ich denn darauf?

Er klettert 1m und dann wächst der Baum doch 1m,
das ergibt in der Summe doch Null^^

Danke schonmal für die Antworten.

        
Bezug
Knobelaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Mi 14.03.2012
Autor: wieschoo


> Ein Käfer sitzt am Morgen am Fuße eines Baumes von 2 m
> Höhe. Im Laufe des Tages krabbelt der Käfer einen Meter
> am Stamm nach oben. In der folgenden Nacht, während der
> Käfer schläft, wächst der Baum - entlang der gesamten
> Länge gleichmäßig - um einen Meter. Am folgenden Tag und
> in der folgenden Nacht wiederholt sich der Vorgang: Der
> Käfer krabbelt jeden Tag einen Meter weit, nachts wächst
> der Baum um einen Meter. Erreicht der Käfer auf diese
> Weise jemals die Spitze des Baumes?
>  Hey Leute,
>  
> die Lösung ist dass der Käfer irgendwann es schafft.
>  Aber wie komme ich denn darauf?
>  
> Er klettert 1m und dann wächst der Baum doch 1m,
>  das ergibt in der Summe doch Null^^

Hast du dir überhaupt Gedanken gemacht?

>  
> Danke schonmal für die Antworten.

Bezeichne mit [mm] $h_t$ [/mm] die Resthöhe zum nach dem Krabbeln.
Der Baum ist 200cm hoch(wir rechnen am besten in cm).
Jetzt krabbelt der Käfer seine 100cm, [mm] $h_0=????$. [/mm] Durch das gleichmäßige Wachsen in der Nacht wächst der Baum von 200cm auf 300cm als um den Faktor _______. Damit ist die Restweglänge vom Käfer _________. Er krabbelt wieder 100cm....

Stelle die Folge auf und löse [mm] $h_t\leq [/mm] 0$ (oder [mm] $h_t=0)$. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]