matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieKleinste Sigma-Algebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Kleinste Sigma-Algebra
Kleinste Sigma-Algebra < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kleinste Sigma-Algebra: Herangehensweise
Status: (Frage) beantwortet Status 
Datum: 15:56 Mi 25.07.2012
Autor: Dicen

Aufgabe
i) Wir betrachten die Menge Ω = {−3, −2, −1, 0, 1, 2, 3} und die folgenden Zufallsvariablen
(a) X(ω) = 2ω.
(b) X(ω) = ω 2 .
(c) X(ω) = |ω| + 2.
Bestimmen Sie jeweils die kleinste σ-Algebra F uber Ω, sodass X eine Zufallsvariable auf (Ω, F, P ) ist. Wieso spielt hier das Wahrscheinlichkeitsmaß P keine Bedeutung?

(ii) Sei nun das W-Maß P ({ω}) = 1/6 für ω ∈ Ω \ {0} und P ({0}) = 0. Bestimmen Sie für (b)
und (c) die Verteilung PX von X.

Hey, ich habe ein wenig meine Probleme mit der Aufgabe.

Also, ich habe mir überlegt, dass die Urbilder der Zufallsvariable in der Sigma-Algebra  liegen müssen.

Machen wir das mal für a)

Also ImX={-6, -4, -2 , 0, 2, 4, 6}
So wie ich das sehe ist hier die kleinste Sigma-Algebra die Potenzmenge von Omega, weil die Abbildung bijektiv ist.

Ich versuchs mal noch für b)

ImX={0, 1, 4, 9}
Jetzt betrache ich alle Urbilder X^-1({1})={-1,1}
Das mache ich für alle Möglichkeiten und komme auf:
F'={{0},{-1,1},{-2,2},{-4,4}}
Jetzt würde ich noch die Komplemente mit reinehmen, so dass sich F zu:
F={{0},{-4,-2,-1,1,2,4},{-1,1},{-4,-2,0,2,4},{-2,2},{-4,-1,0,1,4},{-4,4},{-2,-1,0,1,2}} ergibt.
Muss ich jetzt noch die Vereinigungen der Mengen mit reinnehmen?

Wäre sehr froh über Hilfe, ich schreibe nächste Woche Klausur und das hier ist mir noch nicht so ganz klar. :)

        
Bezug
Kleinste Sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 10:53 Fr 27.07.2012
Autor: meili

Hallo Dicen,

> i) Wir betrachten die Menge Ω = {−3, −2, −1, 0, 1,
> 2, 3} und die folgenden Zufallsvariablen
>  (a) X(ω) = 2ω.
>  (b) X(ω) = ω 2 .
>  (c) X(ω) = |ω| + 2.
>  Bestimmen Sie jeweils die kleinste σ-Algebra F uber Ω,
> sodass X eine Zufallsvariable auf (Ω, F, P ) ist. Wieso
> spielt hier das Wahrscheinlichkeitsmaß P keine Bedeutung?
>  
> (ii) Sei nun das W-Maß P ({ω}) = 1/6 für ω ∈ Ω \ {0}
> und P ({0}) = 0. Bestimmen Sie für (b)
>  und (c) die Verteilung PX von X.
>  Hey, ich habe ein wenig meine Probleme mit der Aufgabe.
>
> Also, ich habe mir überlegt, dass die Urbilder der
> Zufallsvariable in der Sigma-Algebra  liegen müssen.

[ok]

>  
> Machen wir das mal für a)
>  
> Also ImX={-6, -4, -2 , 0, 2, 4, 6}
>  So wie ich das sehe ist hier die kleinste Sigma-Algebra
> die Potenzmenge von Omega, weil die Abbildung bijektiv
> ist.

[ok]

>  
> Ich versuchs mal noch für b)
>  
> ImX={0, 1, 4, 9}
>  Jetzt betrache ich alle Urbilder X^-1({1})={-1,1}
>  Das mache ich für alle Möglichkeiten und komme auf:
>  F'={{0},{-1,1},{-2,2},{-4,4}}
>  Jetzt würde ich noch die Komplemente mit reinehmen, so
> dass sich F zu:
>  
> F={{0},{-4,-2,-1,1,2,4},{-1,1},{-4,-2,0,2,4},{-2,2},{-4,-1,0,1,4},{-4,4},{-2,-1,0,1,2}}
> ergibt.

Statt -4 und 4 muss es -3 und 3 sein.  Nur Tippfehler?

>  Muss ich jetzt noch die Vereinigungen der Mengen mit
> reinnehmen?

Ja, jede abzählbare Vereinigung von Elementen aus F gehört auch zu F.
Da [mm] $\Omega$ [/mm] endlich ist, sind es alle Vereinigungen.

Auch ist [mm] $\Omega \in$ [/mm] F und [mm] $\emptyset \in$ [/mm] F.

Vergleiche []Sigma-Algebra  .

>  
> Wäre sehr froh über Hilfe, ich schreibe nächste Woche
> Klausur und das hier ist mir noch nicht so ganz klar. :)

Gruß
meili


Bezug
                
Bezug
Kleinste Sigma-Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:55 Fr 27.07.2012
Autor: Dicen

Ja, war nur ein "Tippfehler", beziehungsweise Unkonzentriertheit.

Die Vereinigungen sind dann ja nur noch viel Arbeit, danke schön. :)


e: Das ist übrigens keine neue Frage, hab nur auf den falschen Button geklickt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]