matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKleinsche Vierergruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Kleinsche Vierergruppe
Kleinsche Vierergruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kleinsche Vierergruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Sa 05.11.2005
Autor: mathmetzsch

Hallo,

ich sitze jetzt schon lange daran, zu zeigen, dass die Kleinsche Vierergruppe V ein Normalteiler der alternierenden Gruppe [mm] A_{4} [/mm] ist.

Wie sieht man das? Als ausdrücklichen Hinweis habe ich bekommen, dass a und [mm] bab^{-1} [/mm] dieselbe Ordnung haben.

Der Ansatz ist ja wahrscheinlich anzufangen mit

a*V=...
Jetzt habe ich irgendwie rumprobiert [mm] a^{n}=(bab^{-1})^{n}=e [/mm] und dann irgendwie V*a rauszubekommen, aber ist mir bislang nicht gelungen.

Kann mir bitte jemand helfen?

VG mathmetzsch

        
Bezug
Kleinsche Vierergruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Sa 05.11.2005
Autor: Leopold_Gast

In der Kleinschen Vierergruppe hat ja jedes vom neutralen Element verschiedene Element die Ordnung 2. Schau einmal hier. Vielleicht kommt dir dann eine Idee.

Bezug
                
Bezug
Kleinsche Vierergruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Sa 05.11.2005
Autor: mathmetzsch

Hallo,

danke erst mal, aber das ist genau das, was ich nicht verstehe. Was hat das mit den Ordnungen mit dem Normalteiler zu tun? Mir kommt leider keine Idee, zu mal ich das heute früh schon mal gelesen habe.

Vielleicht kannst du noch etwas deutlicher werden? Danke

VG mathmetzsch

Bezug
                        
Bezug
Kleinsche Vierergruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 Sa 05.11.2005
Autor: Stefan

Hallo!

Die Frage hatte ich dir doch zuletzt schon beantwortet und du hattest meine Lösung doch auch verstanden. [haee]

Liebe Grüße
Stefan

Bezug
                                
Bezug
Kleinsche Vierergruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:11 Sa 05.11.2005
Autor: mathmetzsch

Hallo Stefan,

na ja nicht so ganz. Du hattest mir gezeigt, warum M eine Untergruppe ist. Die Sache mit dem Normalteiler soll ich wie oben beschrieben zeigen und habe damit auch Probleme. Vielleicht kannst du mir oder jemand anders noch mal helfen.

VG mathmetzsch

Bezug
                                        
Bezug
Kleinsche Vierergruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:18 Mo 07.11.2005
Autor: Stefan

Hallo!

Nein, ich hatte bereits gezeigt, dass es sich um einen Normalteiler handelt. Schau doch bitte noch einmal nach...

Es war so:

[mm] $f[(i,j)(n,m)]f^{-1} [/mm] = (f(i),f(j))(f(n),f(m)) [mm] \in [/mm] V$

(wie die Bezeichnungen waren, weiß ich nicht mehr genau, aber das war die Idee...)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]